LM158,258,358 Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
I CC Description These oircuiis oonsisl of two independem, high gain, inlernally frequencyrcompensaled opramps, specifically designed lo operaie from a single power supply over a wide range of vollages. The lowipower supply drain is independem of me magnilude of ihe power supply vollage. Applicalion areas include 1ransducer amplifiers, DC gain blocks and all me convenlional opramp oirouils, which can now be more easily implememed in single power supply syslems. For example, 1hese oircuils can be direclly supplied wi1h ihe slandard +5 V, which is used in logic sysiems and will easily provide me required inlerface eleolronios wi1h no addmonal power supply. In linear mode, lhe inpul commonrmode vol1age range includes ground and me ou1pu1voliage can also swing lo ground, even 1hough operaied from only a single power supply vollage. April 2012 Doc ID 2163 Flev 10 (Thin shrink Pin + W. E m. E I LlLlLlLl This lS mlormahon on a producl m lull producllon
This is information on a product in full production.
April 2012 Doc ID 2163 Rev 10 1/21
21
LM158, LM258, LM358
Low-power dual operational amplifiers
Datasheet production data
Features
Internally frequency-compensated
Large DC voltage gain: 100 dB
Wide bandwidth (unity gain): 1.1 MHz
(temperature compensated)
Very low supply current per operator
essentially independent of supply voltage
Low input bias current: 20 nA
(temperature compensated)
Low input offset voltage: 2 mV
Low input offset current: 2 nA
Input common-mode voltage range includes
negative rails
Differential input voltage range equal to the
power supply voltage
Large output voltage swing 0 V to (VCC+ -1.5 V)
Description
These circuits consist of two independent, high-
gain, internally frequency-compensated op-amps,
specifically designed to operate from a single
power supply over a wide range of voltages. The
low-power supply drain is independent of the
magnitude of the power supply voltage.
Application areas include transducer amplifiers,
DC gain blocks and all the conventional op-amp
circuits, which can now be more easily
implemented in single power supply systems. For
example, these circuits can be directly supplied
with the standard +5 V, which is used in logic
systems and will easily provide the required
interface electronics with no additional power
supply.
In linear mode, the input common-mode voltage
range includes ground and the output voltage can
also swing to ground, even though operated from
only a single power supply voltage.
DIP8
(Plastic package)
SO-8 & MiniSO-8
(Plastic micropackage)
TSSOP8
(Thin shrink small outline package)
Pin connections
(Top view)
1
2
3
Out1
In1-
In1+
4Vc
c
-
8
7
6
Vcc+
Out2
In2-
5In2+
DFN8 2 x 2 mm
(Plastic micropackage)
www.st.com
2/21 Invemng \ mpm \0‘ Nomnvemng mpul D / \ /v\‘ ‘\V/,‘5“A AuA\’/ [:12 ‘ 0;] 5}} Doc ID 2163 Flev 10
Schematic diagram LM158, LM258, LM358
2/21 Doc ID 2163 Rev 10
1 Schematic diagram
Figure 1. Schematic diagram (1/2 LM158)
6μA4μA100μA
Q2 Q3
Q4Q1
Inverting
input
Non-inverting
input
Q8Q9
Q10
Q11
Q12
50μA
Q13
Output
Q7
Q6
Q5
R
SC
V
CC
C
C
GND
LM158, LM258, LM358 Absolute maximum ratings
Doc ID 2163 Rev 10 3/21
2 Absolute maximum ratings
Table 1. Absolute maximum ratings
Symbol Parameter LM158,A LM258,A LM358,A Unit
VCC Supply voltage +/-16 or 32 V
ViInput voltage 32 V
Vid Differential input voltage 32 V
Output short-circuit duration (1)
1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output
current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result
from simultaneous short circuits on all amplifiers.
Infinite
Iin Input current (2)
2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP transistor becoming forward-biased and thereby acting as input
diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor
action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large
overdrive) for the time during which an input is driven negative.
This is not destructive and normal output is restored for input voltages above -0.3 V.
5 mA in DC or 50 mA in AC (duty
cycle = 10%, T=1s) mA
Toper Operating free-air temperature range -55 to +125 -40 to +105 0 to +70 °C
Tstg Storage temperature range -65 to +150 °C
TjMaximum junction temperature 150 °C
Rthja
Thermal resistance junction to ambient(3)
SO-8
MiniSO-8
TSSOP8
DIP8
DFN8 2x2
3. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values.
125
190
120
85
57
°C/W
Rthjc
Thermal resistance junction to case (3)
SO-8
MiniSO-8
TSSOP8
DIP8
40
39
37
41
°C/W
ESD
HBM: human body model(4)
4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
300 V
MM: machine model(5)
5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
200 V
CDM: charged device model(6)
6. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
1.5 kV
Operating conditions LM158, LM258, LM358
4/21 Doc ID 2163 Rev 10
3 Operating conditions
Table 2. Operating conditions
Symbol Parameter Value Unit
VCC Supply voltage 3 to 30 V
Vicm Common mode input voltage range(1)
1. When used in comparator, the functionality is guaranteed as long as at least one input remains within the
operating common mode voltage range.
VCC- -0.3 to VCC+ -1.5 V
Toper
Operating free air temperature range
LM158
LM258
LM358
-55 to +125
-40 to +105
0 to +70
°C
LM158, LM258, LM358 Electrical characteristics
Doc ID 2163 Rev 10 5/21
4 Electrical characteristics
Table 3. Electrical characteristics for VCC+ = +5 V, VCC- = Ground, Vo = 1.4 V, Tamb = +25°C
(unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
Vio
Input offset voltage (1)
LM158A
LM258A, LM358A
LM158, LM258
LM358
1
2
2
3
5
7mV
Tmin T
amb T
max
LM158A, LM258A, LM358A
LM158, LM258
LM358
4
7
9
DVio
Input offset voltage drift
LM158A, LM258A, LM358A
LM158, LM258, LM358
7
7
15
30
µV/°C
Iio
Input offset current
LM158A, LM258A, LM358A
LM158, LM258, LM358
Tmin T
amb T
max
LM158A, LM258A, LM358A
LM158, LM258, LM358
2
2
10
30
30
40
nA
DIio
Input offset current drift
LM158A, LM258A, LM358A
LM158, LM258, LM358
10
10
200
300
pA/°C
Iib
Input bias current (2)
LM158A, LM258A, LM358A
LM158, LM258, LM358
Tmin T
amb T
max
LM158A, LM258A, LM358A
LM158, LM258, LM358
20
20
50
150
100
200
nA
Avd
Large signal voltage gain
VCC+= +15 V, RL = 2 kΩ, Vo = 1.4 V to 11.4 V
Tmin T
amb T
max
50
25
100 V/mV
SVR
Supply voltage rejection ratio
VCC+ = 5 V to 30 V, Rs 10 kΩ
Tmin T
amb T
max
65
65
100 dB
ICC
Supply current, all amp, no load
Tmin T
amb T
max VCC+ = +5 V
Tmin T
amb T
max VCC+ = +30 V
0.7 1.2
2
mA
Vicm
Input common mode voltage range
VCC+= +30 V (3)
Tmin T
amb T
max
0
0
VCC+ -1.5
VCC+ -2
V
Z 1‘
Electrical characteristics LM158, LM258, LM358
6/21 Doc ID 2163 Rev 10
CMR
Common mode rejection ratio
Rs 10 kΩ
Tmin T
amb T
max
70
60
85 dB
Isource
Output current source
VCC+ = +15 V, Vo = +2 V, Vid = +1 V 20 40 60 mA
Isink
Output sink current
VCC+ = +15 V, Vo = +2 V, Vid = -1 V
VCC+ = +15 V, Vo = +0.2 V, Vid = -1 V
10
12
20
50
mA
µA
VOH
High level output voltage
RL = 2 kΩ, VCC+ = 30 V
Tmin T
amb T
max
RL = 10 kΩ, VCC+ = 30 V
Tmin Tamb T
max
26
26
27
27
27
28
V
VOL
Low level output voltage
RL = 10 kΩ
Tmin T
amb T
max
520
20
mV
SR
Slew rate
VCC+ = 15 V, Vi = 0.5 to 3 V, RL = 2 kΩ,
CL = 100 pF, unity gain
0.3 0.6 V/µs
GBP
Gain bandwidth product
VCC+ = 30 V, f = 100 kHz, Vin = 10 mV,
RL = 2 kΩ, CL = 100 pF
0.7 1.1 MHz
THD
Total harmonic distortion
f = 1 kHz, Av = 20 dB, RL = 2 kΩ, Vo = 2 Vpp,
CL= 100 pF, VO = 2 Vpp
0.02 %
en
Equivalent input noise voltage
f = 1 kHz, Rs = 100 Ω, VCC+ = 30 V 55
Vo1/Vo2
Channel separation(4)
1kHz f 20 kHz 120 dB
1. Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC+ < 30 V, 0 < Vic < VCC+ - 1.5 V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output
so there is no change in the load on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V.
The upper end of the common-mode voltage range is VCC+ - 1.5 V, but either or both inputs can go to +32 V without
damage.
4. Due to the proximity of external components, ensure that stray capacitance between these external parts does not cause
coupling. Typically, this can be detected because this type of capacitance increases at higher frequencies.
Table 3. Electrical characteristics for VCC+ = +5 V, VCC- = Ground, Vo = 1.4 V, Tamb = +25°C
(unless otherwise specified) (continued)
Symbol Parameter Min. Typ. Max. Unit
nV
Hz
------------
‘ ‘ ‘ ‘ mm V wan : vcm vcc ; an v1 .55'c4 < vcc="qnzoq5va" a="">< \="" \="" \="" m="" m="" mu="" m="" ink="" wok="" frequencv="" mu="">
LM158, LM258, LM358 Electrical characteristics
Doc ID 2163 Rev 10 7/21
Figure 2. Open-loop frequency response Figure 3. Large signal frequency response
VOLTAGE GAIN (dB)
1.0 10 100 1k 10k 100k 1M 10M
VCC = +10 to +15 V &
FREQUENCY (Hz)
10 M7
VI
VCC/2
VCC = 30 V &
-55°C
0.1 MF
VCC
VO
-
+
-55°C Tamb+125°C
140
120
100
80
60
40
20
0
Tamb+125°C
-
+
OUTPUT SWING (Vpp)
1k 10k 100k 1M
FREQUENCY (Hz)
100 k7
VI
1 k7
VO
20
15
10
5
0
2 k7
+15 V
+7 V
Figure 4. Voltage follower pulse response
with VCC = 15 V
Figure 5. Voltage follower pulse response
with VCC = 30 V
INPUT
VOLTAGE (V)
TIME (Ms)
RL 2 k7
OUTPUT
VOLTAGE (V)
4
3
2
1
0
3
2
1
VCC = +15 V
0 10 20 30 40
Input
Output
50 pF
+
-
OUTPUT VOLTAGE (mV)
0 1 2 3 4 5 6 7 8
TIME (Ms)
eI
Tamb = +25°C
VCC = 30 V
500
450
400
350
300
250
eO
Figure 6. Input current Figure 7. Output voltage vs sink current
INPUT CURRENT (mA)
TEMPERATURE (°C)
-55 -35 -15 5 25 45 65 85 105 125
90
80
70
60
50
40
30
20
10
0
VCC = +30 V
VCC = +15 V
VCC = +5 V
VI = 0 V
-
+
OUTPUT VOLTAGE (v)
0.001 0.01 0.1 1 10 100
OUTPUT SINK CURRENT (mA)
VO
VCC/2
VCC = +5 V
VCC = +15 V
VCC = +30 V
VCC
IO
10
1
0.1
0.01
Tamb = + 25°C
en! Figure 13. Input current 8/21 Doc ID 2163 Flev 10
Electrical characteristics LM158, LM258, LM358
8/21 Doc ID 2163 Rev 10
Figure 8. Output voltage vs source current Figure 9. Current limiting
+
-
OUTPUT VOLTAGE REFERENCED
TO VCC+ (V)
0.001 0.01 0.1 1 10 100
OUTPUT SOURCE CURRENT (mA)
VO
Independent of VCC
VCC/2
IO
8
5
2
1
Tamb = + 25°C
VCC
7
6
4
3
-
+
OUTPUT CURRENT (mA)
-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE °C
IO
90
80
50
40
30
20
10
0
70
60
Figure 10. Input voltage range Figure 11. Open-loop gain
Figure 12. Supply current Figure 13. Input current
Negative
Positive
INPUT VOLTAGE (V)
0 5 10 15
POWER SUPPLY VOLTAGE (±V)
10
5
15
VOLTAGE GAIN (dB)
POSITIVE SUPPLY VOLTAGE (V)
0 10 20 30 40
120
40
160
80
RL = 20 k7
RL = 2 k7
-
+
SUPPLY CURRENT (mA)
0 10 20 30
POSITIVE SUPPLY VOLTAGE (V)
mA
VCC
ID
Tamb = 0°C to +125°C
4
3
2
1
Tamb = -55°C
INPUT CURRENT (nA)
0 10 20 30
POSITIVE SUPPLY VOLTAGE (V)
100
75
50
25
Tamb = +25°C
so 40 C\=TDpF pm. Margm (‘y Capacmvc mad va‘ucs 7on 10pr wzapmww zzuvs‘ 290m: 0 400 u 100 mm m $33533 Gun mo auu 900mm Source my mum valuul Smk m nzgnhv: valuzs
LM158, LM258, LM358 Electrical characteristics
Doc ID 2163 Rev 10 9/21
Figure 14. Gain bandwidth product Figure 15. Power supply rejection ratio
GAIN BANDWIDTH PRODUCT (MHz)
-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE (°C)
1.05
0.45
0.3
0.15
VCC = ± 15 V
1.2
0.9
0.75
0.6
1.35
1.5
0
POWER SUPPLY REJECTION RATIO (dB)
SVR
-55 -35 -15 5 25 45 65 85 105 125
100
80
75
70
105
95
90
85
110
115
65
TEMPERATURE (°C)
60
Figure 16. Common-mode rejection ratio Figure 17. Phase margin vs. capacitive load
COMMON MODE REJECTION RATIO (dB)
-55 -35 -15 5 25 45 65 85 105 125
100
80
75
70
105
95
90
85
110
115
65
TEMPERATURE (°C)
60
Phase Margin at Vcc=15V and Vicm=7.5V
Vs. Iout and Capacitive load value
ahuquv:H) _| EBUMEEZ» MR1=R55ndR3=RA=R6=R7 e°=[1+ a mega) R2 As shown an = 1m (92+ 5‘) 10/21 Doc ID 2163 Flev 10
Typical applications LM158, LM258, LM358
10/21 Doc ID 2163 Rev 10
5 Typical applications
Single supply voltage VCC = +5 VDC.
Figure 18. AC-coupled inverting amplifier Figure 19. Non-inverting DC amplifier
1/2
LM158
~
0
2V
PP
R
10k W
L
C
o
e
o
R
6.2k
W
B
R
100k
W
f
R1
10kW
C
I
e
I
V
CC
R2
100k
W
C1
10
m
F
R3
100k
W
A=-R
R1
V
f
(as shown A = -10)
V
R1
10k
W
R2
1M
W
1/2
LM158
10k
W
eI
eO+5V
e
O
(V)
(mV)
0
AV=1+ R2
R1
(As shown = 101)
AV
Figure 20. AC-coupled non-inverting amplifier Figure 21. DC summing amplifier
1/2
LM158
~
0
2V
PP
R
10kW
L
C
o
e
o
R
6.2k
W
B
C1
0.1mF
e
I
V
CC
(as shown A = 11)
V
A=1+
R2
R1
V
R1
100k
W
R2
1M
W
C
I
R3
1M
W
R4
100k
W
R5
100k
W
C2
10
m
F
1/2
LM158
eO
e4
e3
e2
e1100k
W
100k
W
100k
W
100k
W
100k
W
100k
W
eo = e1 + e2 - e3 - e4
where (e1 + e2) (e3 + e4)
to keep eo 0V
Figure 22. High input Z, DC differential
amplifier
Figure 23. High input Z adjustable gain DC
instrumentation amplifier
R1
100k
W
R2
100k
W
R4
100k
W
R3
100k
W
+V2
+V1
V
o
1/2
LM158 1/2
LM158
if R1 = R5 and R3 = R4 = R6 = R7
eo = [1 + ] ( (e2 + e1)
As shown eo = 101 (e2 + e1)
2R1
R2
-----------
R3
100k
W
eO
1/2
LM158
R1
100k
W
e1
R7
100k
W
R6
100k
W
R5
100k
W
e2
R2
2k
W
Gain adjust
R4
100k
W
1/2
LM158
1/2
LM158
if R1 = R5 and
R3 = R4 = R6 = R7
eo = [ 1 + ] ( (e2 + e1)
As shown eo = 101 (e2 + e1)
2R1
R2
-----------
f l‘ \B Lmsa \ 2N 929 y, i T DOIMF é In 4 “2 3M” ”“55 F ‘I7 ’ \npmcurremcompensauon - u 15mg FE , Figure 26. Active band-pass filter ‘7] Doc ID 2163 Flev10
LM158, LM258, LM358 Typical applications
Doc ID 2163 Rev 10 11/21
Figure 24. Using symmetrical amplifiers to
reduce input current
Figure 25. Low drift peak detector
Figure 26. Active band-pass filter
1/2
LM158
I
B
2N 929
0.001
m
F
I
B
3M
W
I
B
e
o
I
I
e
I
I
B
I
B
Input current compensation
1.5M
W
1/2
LM158
I
B
2N 929
0.001
m
F
I
B
3R
3M
W
I
B
Input current
compensation
e
o
I
B
e
I
1/2
LM158
Z
o
Z
I
C
1mF
2I
B
R
1M
W
2I
B
1/2
LM158
1/2
LM158
1/2
LM158
R8
100k
W
C3
10
m
F
R7
100k
W
R5
470k
W
C1
330pF
V
o
V
CC
R6
470k
W
C2
330pF
R4
10M
W
R1
100k
W
R2
100k
W
+V1
R3
100k
W
1/2
LM158
1/2
LM158
Package information LM158, LM258, LM358
12/21 Doc ID 2163 Rev 10
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
:: L‘ 1 w *0 LJ \ EEO ENV: BONE
LM158, LM258, LM358 Package information
Doc ID 2163 Rev 10 13/21
6.1 DIP8 package information
Figure 27. DIP8 package mechanical drawing
Table 4. DIP8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A5.330.210
A1 0.38 0.015
A2 2.92 3.30 4.95 0.115 0.130 0.195
b 0.36 0.46 0.56 0.014 0.018 0.022
b2 1.14 1.52 1.78 0.045 0.060 0.070
c 0.20 0.25 0.36 0.008 0.010 0.014
D 9.02 9.27 10.16 0.355 0.365 0.400
E 7.62 7.87 8.26 0.300 0.310 0.325
E1 6.10 6.35 7.11 0.240 0.250 0.280
e 2.54 0.100
eA 7.62 0.300
eB 10.92 0.430
L 2.92 3.30 3.81 0.115 0.130 0.150
Package information LM158, LM258, LM358
14/21 Doc ID 2163 Rev 10
6.2 SO-8 package information
Figure 28. SO-8 package mechanical drawing
Table 5. SO-8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.750.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
E 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k1° 8°1° 8°
ccc 0.10 0.004
EJL Em 5% S 9:2: 7: __
LM158, LM258, LM358 Package information
Doc ID 2163 Rev 10 15/21
6.3 MiniSO-8 package information
Figure 29. MiniSO-8 package mechanical drawing
Table 6. MiniSO-8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.1 0.043
A1 0 0.15 0 0.006
A2 0.75 0.85 0.95 0.030 0.033 0.037
b 0.22 0.40 0.009 0.016
c 0.08 0.23 0.003 0.009
D 2.80 3.00 3.20 0.11 0.118 0.126
E 4.65 4.90 5.15 0.183 0.193 0.203
E1 2.80 3.00 3.10 0.11 0.118 0.122
e 0.65 0.026
L 0.40 0.60 0.80 0.016 0.024 0.031
L1 0.95 0.037
L2 0.25 0.010
k0° 8°0° 8°
ccc 0.10 0.004
5mm PLANE i 1% NouvauuNEm > Md
Package information LM158, LM258, LM358
16/21 Doc ID 2163 Rev 10
6.4 TSSOP8 package information
Figure 30. TSSOP8 package mechanical drawing
Table 7. TSSOP8 package mechanical data
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.2 0.047
A1 0.05 0.15 0.002 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.0256
k0° 8°0° 8°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1 0.039
aaa 0.1 0.004
' \ wwuv ,/ , g m mmm”
LM158, LM258, LM358 Package information
Doc ID 2163 Rev 10 17/21
6.5 DFN8 2 x 2 package mechanical data
Figure 31. DFN8 2 x 2 package mechanical drawing
Table 8. DFN8 2 x 2 x 0.6 mm package mechanical data (pitch 0.5 mm)
Ref.
Dimensions
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 0.51 0.55 0.60 0.020 0.022 0.024
A1 0.05 0.002
A3 0.15 0.006
b 0.18 0.25 0.30 0.007 0.010 0.012
D 1.85 2.00 2.15 0.073 0.079 0.085
D2 1.45 1.60 1.70 0.057 0.063 0.067
E 1.85 2.00 2.15 0.073 0.079 0.085
E2 0.75 0.90 1.00 0.030 0.035 0.039
e 0.50 0.020
L0.500.020
ddd 0.08 0.003
EEO®.N Eem+.o IE 0 30mm TL. 1 60mm II 0.50mm EEmV.O
Package information LM158, LM258, LM358
18/21 Doc ID 2163 Rev 10
Figure 32. DFN8 2 x 2 footprint recommendation
LM158, LM258, LM358 Ordering information
Doc ID 2163 Rev 10 19/21
7 Ordering information
Table 9. Order codes
Order code Temperature range Package Packaging Marking
LM158N
-55°C, +125°C
DIP8 Tube LM158N
LM158QT DFN8 2x2 Tape & reel K4A
LM158D
LM158DT SO-8 Tube or tape & reel 158
LM158YDT(1) SO-8
Automotive grade Tape & reel 158Y
LM258AN
LM258N
-40°C, +105°C
DIP8 Tube LM258A
LM258N
LM258AD
LM258ADT SO-8 Tube or tape & reel 258A
LM258AYDT(1) SO-8
Automotive grade Tape & reel 258AY
LM258D
LM258DT SO-8 Tube or tape & reel 258
LM258YDT(1) SO-8
Automotive grade Tape & reel 258Y
LM258PT
LM258APT TSSOP8
Tape & reel
258
258A
LM258YPT(2)
LM258AYPT(2)
TSSOP8
Automotive grade
258Y
258AY
LM258AST
LM258STMiniSO-8 Tape & reel K408
K416
LM258QT DFN8 2x2 Tape & reel K4C
LM358N
LM358AN
0°C, +70°C
DIP8 Tube LM358N
LM358AN
LM358D
LM358DT SO-8 Tube or tape & reel 358
LM358YDT(1) SO-8
Automotive grade Tape & reel 358Y
LM358AD
LM358ADT SO-8 Tube or tape & reel 358A
LM358PT
LM358APT TSSOP8
Tape & reel
358
358A
LM358YPT(2)
LM358AYPT(2)
TSSOP8
Automotive grade
358Y
358AY
LM358ST
LM358ASTMiniSO-8 Tape & reel K405
K404
LM358QT DFN8 2x2 Tape & reel K4E
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001
& Q 002 or equivalent.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC
Q001 & Q 002 or equivalent are on-going.
Revision history LM158, LM258, LM358
20/21 Doc ID 2163 Rev 10
8 Revision history
Table 10. Document revision history
Date Revision Changes
01-Jul- 2003 1 First release.
02-Jan-2005 2 Rthja and Tj parameters added in AMR Table 1 on page 3.
01-Jul-2005 3 ESD protection inserted in Table 1 on page 3.
05-Oct-2006 4 Added Figure 17: Phase margin vs. capacitive load.
30-Nov-2006 5 Added missing ordering information.
25-Apr-2007 6
Removed LM158A, LM258A and LM358A from document title.
Corrected error in MiniSO-8 package data. L1 is 0.004 inch.
Added automotive grade order codes in Section 7 on page 19.
12-Feb-2008 7
Corrected VCC max (30 V instead of 32 V) in operating conditions.
Changed presentation of electrical characteristics table.
Deleted Vopp parameter in electrical characteristics table.
Corrected miniSO-8 package information.
Corrected temperature range for automotive grade order codes.
Updated automotive grade footnotes in order codes table.
26-Aug-2008 8
Added limitations on input current in Table 1: Absolute maximum
ratings.
Corrected title for Figure 11.
Added E and L1 parameters in Table 5: SO-8 package mechanical
data.
Changed Figure 30.
02-Sep-2011 9
In Chapter 6: Package information, added:
DFN8 2 x 2 mm package mechanical drawing
DFN8 2 x 2 mm recommended footprint
DFN8 2 x 2 mm order codes.
06-Apr-2012 10 Removed order codes LM158YD, LM258AYD, LM258YD and
LM358YD from Table 9: Order codes.
LM158, LM258, LM358
Doc ID 2163 Rev 10 21/21
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

Products related to this Datasheet

IC OPAMP GP 2 CIRCUIT 8TSSOP
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8DIP
IC OPAMP GP 2 CIRCUIT 8DIP
IC OPAMP GP 2 CIRCUIT 8DIP
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8DIP
IC OPAMP GP 2 CIRCUIT 8DIP
IC OPAMP GP 2 CIRCUIT 8TSSOP
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8TSSOP
IC OPAMP GP 2 CIRCUIT 8TSSOP
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8TSSOP
IC OPAMP GP 2 CIRCUIT 8TSSOP
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8TSSOP
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8TSSOP
IC OPAMP GP 2 CIRCUIT 8TSSOP