TSX711, 712 Datasheet by STMicroelectronics

View All Related Products | Download PDF Datasheet
I ’l hienugmented TSX711 and TSX711A SOT2375 TSX71 2 J/ n 4/} &; MmiSOS SOB
March 2017
DocID025959 Rev 5
1/31
This is information on a product in full production.
www.st.com
TSX711, TSX711A, TSX712
Low-power, precision, rail-to-rail, 2.7 MHz, 16 V CMOS
operational amplifiers
Datasheet - production data
Features
Low input offset voltage: 200 µV max.
Rail-to-rail input and output
Low current consumption: 800 µA max.
Gain bandwidth product: 2.7 MHz
Low supply voltage: 2.7 - 16 V
Unity gain stable
Low input bias current: 50 pA max.
High ESD tolerance: 4 kV HBM
Extended temp. range: -40 °C to 125 °C
Automotive qualification
Related products
See the TSX7191 and TSX7192 for higher
speeds with similar precision
See the TSX561 and TSX562 for low-power
features
See the TSX631 and TSX632 for micro-
power features
See the TSX921 and TSX922 for higher
speeds
Applications
Battery-powered instrumentation
Instrumentation amplifier
Active filtering
DAC buffer
High-impedance sensor interface
Current sensing (high and low side)
Description
The TSX711, TSX711A, and TSX712 series of
operational amplifiers (op amps) offer high
precision functioning with low input offset voltage
down to a maximum of 200 µV at 25 °C. In
addition, their rail-to-rail input and output
functionality allow these products to be used on
full range input and output without limitation. This
is particularly useful for a low-voltage supply such
as 2.7 V that the TSX71x is able to operate with.
Thus, the TSX71x has the great advantage of
offering a large span of supply voltages, ranging
from 2.7 V to 16 V. They can be used in multiple
applications with a unique reference.
Low input bias current performance makes the
TSX71x perfect when used for signal conditioning
in sensor interface applications. In addition, low-
side and high-side current measurements can be
easily made thanks to rail-to-rail functionality.
High ESD tolerance (4 kV HBM) and a wide
temperature range are also good arguments to
use the TSX71x in the automotive market
segment.
TSX711, TSX711A, TSX712
2/31
DocID025959 Rev 5
Contents
1 Package pin connections ................................................................ 3
2 Absolute maximum ratings and operating conditions ................. 4
3 Electrical characteristics ................................................................ 5
4 Electrical characteristic curves .................................................... 11
5 Application information ................................................................ 17
5.1 Operating voltages .......................................................................... 17
5.2 Input pin voltage ranges .................................................................. 17
5.3 Rail-to-rail input ............................................................................... 17
5.4 Rail-to-rail output ............................................................................. 17
5.5 Input offset voltage drift over temperature ....................................... 18
5.6 Long term input offset voltage drift .................................................. 18
5.7 High values of input differential voltage ........................................... 20
5.8 Capacitive load ................................................................................ 20
5.9 PCB layout recommendations ......................................................... 21
5.10 Optimized application recommendation .......................................... 21
5.11 Application examples ...................................................................... 22
5.11.1 Oxygen sensor ................................................................................. 22
5.11.2 Low-side current sensing.................................................................. 23
6 Package information ..................................................................... 25
6.1 SOT23-5 package information ........................................................ 26
6.2 MiniSO8 package information ......................................................... 27
6.3 SO8 package information ................................................................ 28
7 Ordering information ..................................................................... 29
8 Revision history ............................................................................ 30
OUT VCC+ SOT23-5 0 sum 1 8 vcc+ W1 2 7 ourz \NME 6 W2 vcc 4 5 mm MiniSOB and $08 E]
TSX711, TSX711A, TSX712
Package pin connections
DocID025959 Rev 5
3/31
1 Package pin connections
Figure 1: Pin connections (top view)
Absolute maximum ratings and operating
conditions
TSX711, TSX711A, TSX712
4/31
DocID025959 Rev 5
2 Absolute maximum ratings and operating conditions
Table 1: Absolute maximum ratings (AMR)
Symbol
Parameter
Value
Unit
VCC
Supply voltage (1)
18
V
Vid
Differential input voltage (2)
±VCC
mV
Vin
Input voltage
(VCC-) - 0.2 to (VCC+) + 0.2
V
Iin
Input current (3)
10
mA
Tstg
Storage temperature
-65 to 150
°C
Rthja
Thermal resistance junction to
ambient (4) (5)
SOT23-5
250
°C/W
MiniSO8
190
SO8
125
Tj
Maximum junction temperature
150
°C
ESD
HBM: human body model (6)
4000
V
MM: machine model (7)
100
CDM: charged device model (8)
1500
Latch-up immunity
200
mA
Notes:
(1)All voltage values, except the differential voltage are with respect to the network ground terminal.
(2)Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. See Section
5.7 for the precautions to follow when using the TSX711, TSX711A, and TSX712 with a high differential input
voltage.
(3)Input current must be limited by a resistor in series with the inputs.
(4)Rth are typical values.
(5)Short-circuits can cause excessive heating and destructive dissipation.
(6)According to JEDEC standard JESD22-A114F.
(7)According to JEDEC standard JESD22-A115A.
(8)According to ANSI/ESD STM5.3.1
Table 2: Operating conditions
Symbol
Parameter
Value
Unit
VCC
Supply voltage
2.7 to 16
V
Vicm
Common mode input voltage range
(VCC-) - 0.1 to (VCC+) + 0.1
Toper
Operating free air temperature range
-40 to 125
°C
TSX711, TSX711A, TSX712
Electrical characteristics
DocID025959 Rev 5
5/31
nV
month
---------------------------
3 Electrical characteristics
Table 3: Electrical characteristics at VCC+ = 4 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, and
RL > 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Vio
(TSX711,
TSX712)
Input offset voltage
Vicm = VCC/2
200
μV
Tmin < Top < 85 °C
365
Tmin < Top < 125 °C
450
Vio
(TSX711A)
Vicm = VCC/2
100
Tmin < Top < 85 °C
265
Tmin < Top < 125 °C
350
ΔVio/ΔT
Input offset voltage drift (1)
2.5
µV/°C
ΔVio
Long term input offset
voltage drift (2)
T = 25 °C
1
Iib
Input bias current (1)
Vout = VCC/2
1
50
pA
Tmin < Top < Tmax
200
Iio
Input offset current (1)
Vout = VCC/2
1
50
Tmin < Top < Tmax
200
RIN
Input resistance
1
CIN
Input capacitance
12.5
pF
CMRR
(TSX711,
TSX711A)
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
Vicm = -0.1 to 4.1 V, Vout = VCC/2
84
102
dB
Tmin < Top < Tmax
83
Vicm = -0.1 to 2 V, Vout = VCC/2
100
122
Tmin < Top < Tmax
94
CMRR
(TSX712)
Vicm = -0.1 to 4.1 V, Vout = VCC/2
80
98
Tmin < Top < Tmax
78
Vicm = -0.1 to 2 V, Vout = VCC/2
91
103
Tmin < Top < Tmax
86
Avd
Large signal voltage gain
RL= 2 kΩ, Vout = 0.3 to 3.7 V
110
136
Tmin < Top < Tmax
96
RL= 10 kΩ, Vout = 0.2 to 3.8 V
110
140
Tmin < Top < Tmax
96
VOH
High level output voltage
(voltage drop from VCC+)
RL= 2 kΩ to VCC/2
28
50
mV
Tmin < Top < Tmax
60
RL= 10 kΩ tο VCC/2
6
15
Tmin < Top < Tmax
20
Electrical characteristics
TSX711, TSX711A, TSX712
6/31
DocID025959 Rev 5
nV
Hz
------------
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
VOL
Low level output voltage
RL= 2 kΩ tο VCC/2
23
50
mV
Tmin < Top < Tmax
60
RL= 10 kΩ tο VCC/2
5
15
Tmin < Top < Tmax
20
Iout
(TSX711,
TSX711A)
Isink
Vout = VCC
35
45
mA
Tmin < Top < Tmax
20
Isource
Vout = 0 V
35
45
Tmin < Top < Tmax
20
Iout
(TSX712)
Isink
Vout = VCC
25
37
Tmin < Top < Tmax
15
Isource
Vout = 0 V
35
45
Tmin < Top < Tmax
20
ICC
Supply current per
amplifier
No load, Vout = VCC/2
570
800
μA
Tmin < Top < Tmax
900
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
1.9
2.7
MHz
ɸm
Phase margin
RL = 10 kΩ, CL = 100 pF
50
Degrees
Gm
Gain margin
RL = 10 kΩ, CL = 100 pF
15
dB
SRn
Negative slew rate
Av = 1, Vout = 3 VPP, 10 % to
90 %
0.6
0.85
V/μs
Tmin < Top < Tmax
0.5
SRp
Positive slew rate
Av = 1, Vout = 3VPP, 10 % to
90 %
1.0
1.4
Tmin < Top < Tmax
0.9
en
Equivalent input noise
voltage
f = 1 kHz
22
f = 10 kHz
19
THD+N
Total harmonic distortion
+ noise
f =1 kHz, Av = 1, RL= 10 kΩ,
BW = 22 kHz, Vin= 0.8 VPP
0.001
%
Notes:
(1)Maximum values are guaranteed by design.
(2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6).
TSX711, TSX711A, TSX712
Electrical characteristics
DocID025959 Rev 5
7/31
nV
month
---------------------------
Table 4: Electrical characteristics at VCC+ = 10 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C, and
RL > 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Vio
(TSX711,
TSX712)
Input offset voltage
Vicm = VCC/2
200
μV
Tmin < Top < 85 °C
365
Tmin < Top < 125 °C
450
Vio
(TSX711A)
Vicm = VCC/2
100
Tmin < Top < 85 °C
265
Tmin < Top < 125 °C
350
ΔVio/ΔT
Input offset voltage drift (1)
2.5
μV/°C
ΔVio
Long term input offset
voltage drift (2)
T = 25 °C
25
Iib
Input bias current (1)
Vout = VCC/2
1
50
pA
Tmin < Top < Tmax
200
Iio
Input offset current (1)
Vout = VCC/2
1
50
Tmin < Top < Tmax
200
RIN
Input resistance
1
CIN
Input capacitance
12.5
pF
CMRR
(TSX711,
TSX711A)
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
Vicm = -0.1 to 10.1 V, Vout = VCC/2
90
102
dB
Tmin < Top < Tmax
86
Vicm = -0.1 to 8 V, Vout = VCC/2
105
117
Tmin < Top < Tmax
95
CMRR
(TSX712)
Vicm = -0.1 to 10.1 V, Vout = VCC/2
88
100
Tmin < Top < Tmax
84
Vicm = -0.1 to 8 V, Vout = VCC/2
98
106
Tmin < Top < Tmax
92
Avd
Large signal voltage gain
RL= 2 kΩ, Vout = 0.3 to 9.7 V
110
140
Tmin < Top < Tmax
100
RL= 10 kΩ, Vout = 0.2 to 9.8 V
110
Tmin < Top < Tmax
100
VOH
High level output voltage
(voltage drop from VCC+)
RL= 2 kΩ ο VCC/2
45
70
mV
Tmin < Top < Tmax
80
RL= 10 kΩ ο VCC/2
10
30
Tmin < Top < Tmax
40
VOL
Low level output voltage
RL= 2 kΩ ο VCC/2
42
70
Tmin < Top < Tmax
80
RL= 10 kΩ ο VCC/2
9
30
Tmin < Top < Tmax
40
an:
Electrical characteristics
TSX711, TSX711A, TSX712
8/31
DocID025959 Rev 5
nV
Hz
------------
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Iout
(TSX711,
TSX711A)
Isink
Vout = VCC
50
70
mA
Tmin < Top < Tmax
40
Isource
Vout = 0 V
50
69
Tmin < Top < Tmax
40
Iout
(TSX712)
Isink
Vout = VCC
30
39
Tmin < Top < Tmax
15
Isource
Vout = 0 V
50
69
Tmin < Top < Tmax
40
ICC
Supply current per
amplifier
No load, Vout = VCC/2
630
850
μA
Tmin < Top < Tmax
1000
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
1.9
2.7
MHz
ɸm
Phase margin
RL = 10 kΩ, CL = 100 pF
53
Degrees
Gm
Gain margin
RL = 10 kΩ, CL = 100 pF
15
dB
SRn
Negative slew rate
Av = 1, Vout = 8 VPP, 10 % to
90 %
0.8
1
V/μs
Tmin < Top < Tmax
0.7
SRp
Positive slew rate
Av = 1, Vout = 8 VPP, 10 % to
90 %
1.0
1.3
Tmin < Top < Tmax
0.9
en
Equivalent input noise
voltage
f = 1 kHz
22
f = 10 kHz
19
THD+N
Total harmonic distortion
+ noise
f = 1 kHz, Av = 1, RL= 10 kΩ,
BW = 22 kHz, Vin= 5 VPP
0.0003
%
Notes:
(1)Maximum values are guaranteed by design.
(2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6).
TSX711, TSX711A, TSX712
Electrical characteristics
DocID025959 Rev 5
9/31
nV
month
---------------------------
Table 5: Electrical characteristics at VCC+ = 16 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 °C, and
RL > 10 kΩ connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Vio
(TSX711,
TSX712)
Input offset voltage
Vicm = VCC/2
200
μV
Tmin < Top < 85 °C
365
Tmin < Top < 125 °C
450
Vio
(TSX711A)
Vicm = VCC/2
100
Tmin < Top < 85 °C
265
Tmin < Top < 125 °C
350
ΔVio/ΔT
Input offset voltage drift (1)
2.5
μV/°C
ΔVio
Long term input offset
voltage drift (2)
T = 25 °C
500
Iib
Input bias current (1)
Vout = VCC/2
1
50
pA
Tmin < Top < Tmax
200
Iio
Input offset current (1)
Vout = VCC/2
1
50
Tmin < Top < Tmax
200
RIN
Input resistance
1
CIN
Input capacitance
12.5
pF
CMRR
(TSX711,
TSX711A)
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
Vicm = -0.1 to 16.1 V, Vout = VCC/2
94
113
dB
Tmin < Top < Tmax
90
Vicm = -0.1 to 14 V, Vout = VCC/2
110
116
Tmin < Top < Tmax
96
CMRR
(TSX712)
Vicm = -0.1 to 16.1 V, Vout = VCC/2
94
107
Tmin < Top < Tmax
90
Vicm = -0.1 to 14 V, Vout = VCC/2
100
107
Tmin < Top < Tmax
90
SVRR
Supply voltage rejection
ratio 20 log (ΔVcc/ΔVio)
Vcc = 4 to 16 V
100
131
Tmin < Top < Tmax
90
Avd
Large signal voltage gain
RL= 2 kΩ, Vout = 0.3 to 15.7 V
110
146
Tmin < Top < Tmax
100
RL= 10 kΩ, Vout = 0.2 to 15.8 V
110
149
Tmin < Top < Tmax
100
VOH
High level output voltage
(voltage drop from VCC+)
RL= 2 kΩ (TSX711, TSX711A)
100
130
mV
RL= 2 kΩ (TSX712)
70
130
Tmin < Top < Tmax
150
RL= 10 kΩ
16
40
Tmin < Top < Tmax
50
Electrical characteristics
TSX711, TSX711A, TSX712
10/31
DocID025959 Rev 5
nV
Hz
------------
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
VOL
Low level output voltage
RL= 2 kΩ
70
130
mV
Tmin < Top < Tmax
150
RL= 10 kΩ
15
40
Tmin < Top < Tmax
50
Iout
(TSX711,
TSX711A)
Isink
Vout = VCC
50
71
mA
Tmin < Top < Tmax
45
Isource
Vout = 0 V
50
68
Tmin < Top < Tmax
45
Iout
(TSX712)
Isink
Vout = VCC
30
40
Tmin < Top < Tmax
15
Isource
Vout = 0 V
50
68
Tmin < Top < Tmax
45
ICC
Supply current per
amplifier
No load, Vout = VCC/2
660
900
μA
Tmin < Top < Tmax
1000
GBP
Gain bandwidth product
RL = 10 kΩ, CL = 100 pF
1.9
2.7
MHz
ɸm
Phase margin
RL = 10 kΩ, CL = 100 pF
55
Degrees
Gm
Gain margin
RL = 10 kΩ, CL= 100 pF
15
dB
SRn
Negative slew rate
Av = 1, Vout = 10 VPP, 10 % to
90 %
0.7
0.95
V/μs
Tmin < Top < Tmax
0.6
SRp
Positive slew rate
Av = 1, Vout = 10 VPP, 10 % to
90 %
1
1.4
Tmin < Top < Tmax
0.9
en
Equivalent input noise
voltage
f = 1 kHz
22
f = 10 kHz
19
THD+N
Total harmonic distortion
+ Noise
f = 1 kHz, Av = 1, RL= 10 kΩ,
BW = 22 kHz, Vin= 10 VPP
0.0002
%
Notes:
(1)Maximum values are guaranteed by design.
(2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 5.6).
800 2° ‘ WNW may v m: A m 15 g H 5 Am a: L a m S E ,3 a a E <3 200="" 5="" a="" 2="" 4="" 5="" b="" 10="" ‘1="" 14="" ‘5="" 4m="" 72m="" 71m="" 4m="" an="" a="" 5n="" mm="" 1m="" 2m="" 2m="" 3m="" supply="" vohsee="" 0’)="" mm="" oflsel="" vouage="" (w)="" 20="" ‘5="" e="" m="" e="" c="" n.="" 5="" 0="" gm="" 2m="" 2m="" ma="" 2m="" 7w="" n="" :0="" ma="" \npm="" afisa="" vohageua/j="" ma="" me="" 230="" am="" w="" m="w" 35="" \m="" w="" r="" ,="" 25.:="" 30="" 25="" fopmahon="" ("m="" a="" s="" ,7="" ,.="" u="" ‘="" awe/at="" (wnd)="" \nput="" (ma="" vnnage="" (m="" a="" m="" 12="" supdyvuhagem="" v="" we="" 14="" 15="">
TSX711, TSX711A, TSX712
Electrical characteristic curves
DocID025959 Rev 5
11/31
4 Electrical characteristic curves
Figure 2: Supply current vs. supply voltage
Figure 3: Input offset voltage distribution at VCC = 16 V
Figure 4: Input offset voltage distribution at VCC = 4 V
Figure 5: Input offset voltage vs. temperature at VCC = 16 V
Figure 6: Input offset voltage drift population
Figure 7: Input offset voltage vs. supply voltage at VICM = 0 V
-40 -20 0 20 40 60 80 100120
-600
-400
-200
0
200
400
600
Vio limit
Vcc=16V
Vicm=8V
Input offset voltage (µV)
Temperature (°C)
m w 2 § 7.7 I? 5’ E E g a 2 E E a 5 9 2 on 0 0 D 5 1 D 1 5 2 0 2 5 U 2 4 6 8 10 12 14 16 \anA Common Made VoHage (v) mum Common Mode vouage (v) 343 100 E 1 E E E 5 <3 .3="" 4="" 3-="" '="" 5="" s="" vzc="17v" 1="" 00="" 05="" ‘0="" ‘5="" 20="" 25="" d="" 2="" 4="" 6="" b="" 1|)="" 12="" 14="" 16="" qadia="" vonaee="" (w="" ompul="" leage="" (v)="" 3110="" 225="" $150="" i="" g="" 75="" e="" 2="" e="" s="" on="" 5="" j.="" ,75="" ‘3.="" 07150="" o="" 425="" m4="" n="" ww="" saw.="" 7300="" ww="" oo="" 05="" 1o="" 15="" 20="" 25="" o="" 2="" 4="" s="" a="" 1o="" 12="" 14="" «a="" outputvohagen)="" oulpuivohageo/j="" k17="">
Electrical characteristic curves
TSX711, TSX711A, TSX712
12/31
DocID025959 Rev 5
Figure 8: Input offset voltage vs. common mode voltage at
VCC = 2.7 V
Figure 9: Input offset voltage vs. common mode voltage at
VCC = 16 V
Figure 10: Output current vs. output voltage at VCC = 2.7 V
(TSX711, TSX711A)
Figure 11: Output current vs. output voltage at VCC = 16 V
(TSX711, TSX711A)
Figure 12: Output current vs. output voltage at VCC = 2.7 V
(TSX712)
Figure 13: Output current vs. output voltage at VCC = 16 V
(TSX712)
so an S v v 25 R aknlavmz r g 25 R mom/m2 man: 9 fl 2 E 1“ § 20 m E \ E )V E 5 :15 > a- 5 a o / 3 _._// 3* 5 '/// 5 o u 4 s a m 12 14 15 A s a 1a 12 1A 16 Supp‘y va‘tage (V) Supp‘y vouage M 1300 1595 A 1590 Z w 1555 A 3 3 E 15 E - a; a 5 mm B 015 L 5 E 010 "’ WW 0 06 pauwMgwm 000 m o .0 § 3 3 3 § E § § § 4 6 a 1o 12 14 16 Inpm vouage 4v) S‘Pu‘lw‘age M W m: m mm swam-F 2 S 8 % § § 3 :7”; m WW 6 3 10 12 14 16 mums) 15 72 a 2 4 s s 1012 WNW W: mm mm m mum 1A 16 1a E]
TSX711, TSX711A, TSX712
Electrical characteristic curves
DocID025959 Rev 5
13/31
Figure 14: Output low voltage vs. supply voltage
Figure 15: Output high voltage (drop from VCC+) vs. supply
voltage
Figure 16: Output voltage vs. input voltage close to the rail at
VCC = 16 V
Figure 17: Slew rate vs. supply voltage
Figure 18: Negative slew rate at VCC = 16 V
Figure 19: Positive slew rate at VCC = 16 V
010 020 <3. 01="" mm="" m="" modf="" ms="" 005="" n="" 7="" m="" s="" 012="" 3="" §="" e="" 3="" %="" §="" ;="" 000="" :="" g="" g="" 005="" g="" 5=""> g g 004 E: m 005 ’ one mo 0 5 10 15 Mews) mew 004 m can 5“ m g 70.54 an w .1 w 5 A 3" 8“ " % g m5 :20 a , a g :91 m W m 3 Va 12 g m 35v Gwm , a x mm ‘ ‘m mum -o.15 Jo swm v we 40 40020 m um w! m Mums) FrecwH‘CyW) Q E 95 WW .1 Wm v m ‘nm m aw (imam 1k m m w Frequency (Hz) m ‘UCBF szamvw my: 10 m: 1k 1 m Frequency (Hz) 1am 1M
Electrical characteristic curves
TSX711, TSX711A, TSX712
14/31
DocID025959 Rev 5
Figure 20: Response to a small input voltage step
Figure 21: Recovery behavior after a negative step on the
input
Figure 22: Recovery behavior after a positive step on the
input
Figure 23: Bode diagram at VCC = 2.7 V
Figure 24: Bode diagram at VCC = 16 V
Figure 25: Power supply rejection ratio (PSRR) vs. frequency
10000 Vwm R am v WV u Baum D 1000 1:2an g g 8 (no a E 3 § § E m 5 a 6 1 o 1 10 Ill] 10m 1k 10k 100k 1M 10M mead (pF) Frequency (Hz) 1 D I 2 D 01 z a é Rmnvm E E 15 Rwanxo szwm 1E4 100 1 am 1 now D 01 D 1 1 10 Frequency (Hz) Ou|put vonage (Vpp) A 1m 6 N m «W I , '5 12° (mm 4 *5“? V , m m s 3 1m 3 2 a 3 5 8° E g a. u 2 w E s a 2 > -2 T: w 2o 4 fl 0 10 1 m 1k Mk 4 6 B 10 Frequency (Hz) fime (s) E]
TSX711, TSX711A, TSX712
Electrical characteristic curves
DocID025959 Rev 5
15/31
Figure 26: Output overshoot vs. capacitive load
Figure 27: Output impedance vs. frequency in closed loop
configuration
Figure 28: THD + N vs. frequency
Figure 29: THD + N vs. output voltage
Figure 30: Noise vs. frequency
Figure 31: 0.1 to 10Hz noise
Channel separahnn (as) 1k 1 Ck Frequency (Hz) 1M
Electrical characteristic curves
TSX711, TSX711A, TSX712
16/31
DocID025959 Rev 5
Figure 32: Channel separation (TSX712)
TSX711, TSX711A, TSX712
Application information
DocID025959 Rev 5
17/31
5 Application information
5.1 Operating voltages
The TSX711, TSX711A, and TSX712 devices can operate from 2.7 to 16 V. The
parameters are fully specified for 4 V, 10 V, and 16 V power supplies. However, the
parameters are very stable in the full VCC range. Additionally, the main specifications are
guaranteed in extended temperature ranges from -40 to 125 °C.
5.2 Input pin voltage ranges
The TSX711, TSX711A, and TSX712 devices have internal ESD diode protection on the
inputs. These diodes are connected between the input and each supply rail to protect the
input MOSFETs from electrical discharge.
If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become
conductive and excessive current can flow through them. Without limitation this over
current can damage the device.
In this case, it is important to limit the current to 10 mA, by adding resistance on the input
pin, as described in Figure 33: "Input current limitation".
Figure 33: Input current limitation
5.3 Rail-to-rail input
The TSX711, TSX711A, and TSX712 devices have a rail-to-rail input, and the input
common mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V.
5.4 Rail-to-rail output
The operational amplifier output levels can go close to the rails: to a maximum of 40 mV
above and below the rail when connected to a 10 kΩ resistive load to VCC/2.
Vin
R
16 V
Vout
+
+
-
-
m(T) .a(25 rvym )
Application information
TSX711, TSX711A, TSX712
18/31
DocID025959 Rev 5
5.5 Input offset voltage drift over temperature
The maximum input voltage drift variation over temperature is defined as the offset
variation related to the offset value measured at 25 °C. The operational amplifier is one of
the main circuits of the signal conditioning chain, and the amplifier input offset is a major
contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated
during production at application level. The maximum input voltage drift over temperature
enables the system designer to anticipate the effect of temperature variations.
The maximum input voltage drift over temperature is computed using Equation 1.
Equation 1
Where T = -40 °C and 125 °C.
The TSX711, TSX711A, and TSX712 datasheet maximum values are guaranteed by
measurements on a representative sample size ensuring a Cpk (process capability index)
greater than 1.3.
5.6 Long term input offset voltage drift
To evaluate product reliability, two types of stress acceleration are used:
Voltage acceleration, by changing the applied voltage
Temperature acceleration, by changing the die temperature (below the maximum
junction temperature allowed by the technology) with the ambient temperature.
The voltage acceleration has been defined based on JEDEC results, and is defined using
Equation 2.
Equation 2
Where:
AFV is the voltage acceleration factor
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)
VS is the stress voltage used for the accelerated test
VU is the voltage used for the application
The temperature acceleration is driven by the Arrhenius model, and is defined in
Equation 3.
Equation 3
Vio
TmaxVio T Vio 25
T 25 °C
=°C
AFV eβVSVU
.
=
AFT e
Ea
k
------ 1
TU
1
TS
=
.
E] K24h x 365 25 days) /2 ~(monlhs)
TSX711, TSX711A, TSX712
Application information
DocID025959 Rev 5
19/31
Where:
AFT is the temperature acceleration factor
Ea is the activation energy of the technology based on the failure rate
k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)
TU is the temperature of the die when VU is used (K)
TS is the temperature of the die under temperature stress (K)
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and
the temperature acceleration factor (Equation 4).
Equation 4
AF is calculated using the temperature and voltage defined in the mission profile of the
product. The AF value can then be used in Equation 5 to calculate the number of months of
use equivalent to 1000 hours of reliable stress duration.
Equation 5
To evaluate the op amp reliability, a follower stress condition is used where VCC is defined
as a function of the maximum operating voltage and the absolute maximum rating
(as recommended by JEDEC rules).
The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at
different measurement conditions (see Equation 6).
Equation 6
The long term drift parameter (ΔVio), estimating the reliability performance of the product, is
obtained using the ratio of the Vio (input offset voltage value) drift over the square root of
the calculated number of months (Equation 7).
Equation 7
Where Vio drift is the measured drift value in the specified test conditions after 1000 h
stress duration.
AFAFT AFV
×=
Months AF1000 h× 12 months 24 h365.25 days××=/
VCC maxVop with Vicm VCC 2= =
Vio
Viodrift
month s
=
Application information
TSX711, TSX711A, TSX712
20/31
DocID025959 Rev 5
5.7 High values of input differential voltage
In a closed loop configuration, which represents the typical use of an op amp, the input
differential voltage is low (close to Vio). However, some specific conditions can lead to
higher input differential values, such as:
operation in an output saturation state
operation at speeds higher than the device bandwidth, with output voltage dynamics
limited by slew rate.
use of the amplifier in a comparator configuration, hence in open loop
Use of the TSX711, TSX711A, or TSX712 in comparator configuration, especially
combined with high temperature and long duration can create a permanent drift of Vio.
5.8 Capacitive load
Driving large capacitive loads can cause stability problems. Increasing the load
capacitance produces gain peaking in the frequency response, with overshoot and ringing
in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an
op amp might become unstable.
Generally, the unity gain configuration is the worst case for stability and the ability to drive
large capacitive loads.
Figure 34: "Stability criteria with a serial resistor at different supply voltage" shows the
serial resistor that must be added to the output, to make a system stable. Figure 35: "Test
configuration for Riso" shows the test configuration using an isolation resistor, Riso.
Figure 34: Stability criteria with a serial resistor at different supply voltage
100 p 1n 10 n 100 n
10
100
1000
Vcc=2.7V
Vcc=16V
Unstable
Stable
Vicm=Vcc/2
Rl=10k
Gain=1
T=25°C
Riso (Ω)
Cload (F)
TSX711, TSX711A, TSX712
Application information
DocID025959 Rev 5
21/31
Figure 35: Test configuration for Riso
5.9 PCB layout recommendations
Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier,
load, and power supply. The power and ground traces are critical as they must provide
adequate energy and grounding for all circuits. The best practice is to use short and wide
PCB traces to minimize voltage drops and parasitic inductance.
In addition, to minimize parasitic impedance over the entire surface, a multi-via technique
that connects the bottom and top layer ground planes together in many locations is often
used.
The copper traces that connect the output pins to the load and supply pins should be as
wide as possible to minimize trace resistance.
5.10 Optimized application recommendation
It is recommended to place a 22 nF capacitor as close as possible to the supply pin. A
good decoupling will help to reduce electromagnetic interference impact.
Cload
VIN +
-
VCC+
Riso
10 kΩ
VCC-
VOUT
won 1 \
Application information
TSX711, TSX711A, TSX712
22/31
DocID025959 Rev 5
5.11 Application examples
5.11.1 Oxygen sensor
The electrochemical sensor creates a current proportional to the concentration of the gas
being measured. This current is converted into voltage thanks to R resistance. This voltage
is then amplified by the TSX711, TSX711A, or the TSX712 (see Figure 36: "Oxygen sensor
principle schematic").
Figure 36: Oxygen sensor principle schematic
The output voltage is calculated using Equation 8:
Equation 8
As the current delivered by the O2 sensor is extremely low, the impact of the Vio can
become significant with a traditional operational amplifier. The use of a precision amplifier
like the TSX711, TSX711A, TSX712 is perfect for this application.
In addition, using the TSX711, TSX711A, TSX712 for the O2 sensor application ensures
that the measurement of O2 concentration is stable, even at different temperatures, thanks
to a small ΔVio/ΔT.
-
+
+
-
O2_ sensor
R1 R2
VCC
Vout
I
VoutI R Vio
R2
R11+××=
TSX711, TSX711A, TSX712
Application information
DocID025959 Rev 5
23/31
5.11.2 Low-side current sensing
Power management mechanisms are found in most electronic systems. Current sensing is
useful for protecting applications. The low-side current sensing method consists of placing
a sense resistor between the load and the circuit ground. The resulting voltage drop is
amplified using the TSX711, TSX711A, or TSX712 (see Figure 37: "Low-side current
sensing schematic").
Figure 37: Low-side current sensing schematic
Vout can be expressed as follows:
Equation 9
Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, Equation 9 can be simplified as follows:
Equation 10
The main advantage of using a precision amplifier like the TSX711, TSX711A, or TSX712,
for a low-side current sensing, is that the errors due to Vio and Iio are extremely low and
may be neglected.
Therefore, for the same accuracy, the shunt resistor can be chosen with a lower value,
resulting in lower power dissipation, lower drop in the ground path, and lower cost.
Particular attention must be paid on the matching and precision of Rg1, Rg2, Rf1, and Rf2, to
maximize the accuracy of the measurement.
Taking into consideration the resistor inaccuracies, the maximum and minimum output
voltage of the operational amplifier can be calculated respectively using Equation 11 and
Equation 12.
-
+
+
-
R
shunt
Rg1
Rg2
C1
Rf1
5 V
Vout
Rf2
IIn
Ip
VoutRshun tI 1 Rg2
Rg2 Rf2
+1Rf1
Rg1
×Ip
Rg2 Rf2
Rg2 Rf2 1Rf1
Rg1 lnRf1 Vio 1Rf1
Rg1
++=+ + ×
×
+×
Vout RshuntIRf
Rg
× Vio 1Rf
Rg
RfIio
×+= +
(FT) (1 + :rs+2u) [7) (1 rererEr)
Application information
TSX711, TSX711A, TSX712
24/31
DocID025959 Rev 5
Equation 11
Equation 12
Where:
εrs is the shunt resistor inaccuracy (example, 1 % )
εr is the inaccuracy of the Rf and Rg resistors (example, 0.1 %)
Maximum Vout Rshunt I× Rf
Rg
× 1 εrs 2εr
+ + Vio 1 Rf
Rg Rf lio
×+×+×=+
Minimum Vout Rshunt I× Rf
Rg
× 1 εrs2εrVio 1 Rf
Rg Rf lio
×+××=+
TSX711, TSX711A, TSX712
Package information
DocID025959 Rev 5
25/31
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Package information
TSX711, TSX711A, TSX712
26/31
DocID025959 Rev 5
6.1 SOT23-5 package information
Figure 38: SOT23-5 package outline
Table 6: SOT23-5 mechanical data
Ref.
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.90
1.20
1.45
0.035
0.047
0.057
A1
0.15
0.006
A2
0.90
1.05
1.30
0.035
0.041
0.051
B
0.35
0.40
0.50
0.014
0.016
0.020
C
0.09
0.15
0.20
0.004
0.006
0.008
D
2.80
2.90
3.00
0.110
0.114
0.118
D1
1.90
0.075
e
0.95
0.037
E
2.60
2.80
3.00
0.102
0.110
0.118
F
1.50
1.60
1.75
0.059
0.063
0.069
L
0.10
0.35
0.60
0.004
0.014
0.024
K
0 degrees
10 degrees
0 degrees
10 degrees
Nouvau‘mam L Md E w E1 ENVId 33mm
TSX711, TSX711A, TSX712
Package information
DocID025959 Rev 5
27/31
6.2 MiniSO8 package information
Figure 39: MiniSO8 package outline
Table 7: MiniSO8 mechanical data
Ref.
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
1.1
0.043
A1
0
0.15
0
0.006
A2
0.75
0.85
0.95
0.030
0.033
0.037
b
0.22
0.40
0.009
0.016
c
0.08
0.23
0.003
0.009
D
2.80
3.00
3.20
0.11
0.118
0.126
E
4.65
4.90
5.15
0.183
0.193
0.203
E1
2.80
3.00
3.10
0.11
0.118
0.122
e
0.65
0.026
L
0.40
0.60
0.80
0.016
0.024
0.031
L1
0.95
0.037
L2
0.25
0.010
k
ccc
0.10
0.004
u 3
Package information
TSX711, TSX711A, TSX712
28/31
DocID025959 Rev 5
6.3 SO8 package information
Figure 40: SO8 package outline
Table 8: SO8 mechanical data
Ref.
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max
A
1.75
0.069
A1
0.10
0.25
0.004
0.010
A2
1.25
0.049
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
1.04
0.040
k
ccc
0.10
0.004
TSX711, TSX711A, TSX712
Ordering information
DocID025959 Rev 5
29/31
7 Ordering information
Table 9: Order codes
Order code
Temperature range
Package
Packaging
Marking
TSX711ILT
-40 to 125 °C
SΟΤ23-5
Tape and reel
K29
TSX711AILT
K195
TSX711IYLT (1)
-40 to 125 °C
(automotive grade)
K197
TSX711AIYLT (1)
K198
TSX712IDT
-40 to 125 °C
SO8
TSX712
TSX712IST
MiniSO8
K211
TSX712IYDT (1)
-40 to 125 °C
(automotive grade)
SO8
TSX712Y
TSX712IYST (1)
MiniSO8
K212
Notes:
(1)Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent.
Revision history
TSX711, TSX711A, TSX712
30/31
DocID025959 Rev 5
8 Revision history
Table 10: Document revision history
Date
Revision
Changes
27-Feb-2014
1
Initial release
19-Mar-2014
2
Table 1: updated ESD data for MM (machine model)
25-Jul-2014
3
Table 3: updated Iout (Isink) values.
Table 3, Table 4, and Table 5: updated Vio values,
updated ΔVio/ΔT.
Table 5: updated VOL values
Table 6: updated “inches” dimensions
26-Jan-2016
4
TSX711 datasheet merged with TSX712 datasheet.
Reworked the following sections: Cover image,
Related products, Description, Section 1: "Package pin
connections", Section 2: "Absolute maximum ratings
and operating conditions", Section 3: "Electrical
characteristics", Section 4: "Electrical characteristic
curves", Section 5.1: "Operating voltages", Section
5.2: "Input pin voltage ranges", Section 5.3: "Rail-to-
rail input", Section 5.4: "Rail-to-rail output", Section
5.5: "Input offset voltage drift over temperature",
Section 5.7: "High values of input differential voltage",
Section 5.11.1: "Oxygen sensor", Section 5.11.2:
"Low-side current sensing", Section 7: "Ordering
information".
Added: Section 6.2: "MiniSO8 package information"
and Section 6.3: "SO8 package information".
21-Mar-2017
5
Added part number TSX711A
Table 9: "Order codes": updated footnotes with
respect to TSX711IYLT, TSX711AIYLT, TSX712IYDT,
and TSX712IYST.
TSX711, TSX711A, TSX712
DocID025959 Rev 5
31/31
IMPORTANT NOTICE PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics All rights reserved

Products related to this Datasheet

IC OPAMP GP 2 CIRCUIT 8MINISO
IC OPAMP GP 1 CIRCUIT SOT23-5
IC CMOS 2 CIRCUIT 8SO
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8MINISO
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 2 CIRCUIT 8MINISO
IC OPAMP GP 2 CIRCUIT 8MINISO
IC OPAMP GP 2 CIRCUIT 8MINISO
IC OPAMP GP 2 CIRCUIT 8MINISO
IC OPAMP GP 2 CIRCUIT 8SO
IC OPAMP GP 2 CIRCUIT 8SO
IC CMOS 2 CIRCUIT 8SO
IC CMOS 2 CIRCUIT 8SO
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-5
IC OPAMP GP 1 CIRCUIT SOT23-5