
This is information on a product in full production.
March 2015 DocID13844 Rev 6 1/30
ST1S10
3 A, 900 kHz, monolithic synchronous step-down regulator IC
Datasheet - production data
Features
Step-down current mode PWM regulator
Output voltage adjustable from 0.8 V
Input voltage from 2.5 V up to 18 V
2% DC output voltage tolerance
Synchronous rectification
Inhibit function
Synchronizable switching frequency from 400
kHz up to 1.2 MHz
Internal soft start
Dynamic short-circuit protection
Typical efficiency: 90%
3 A output current capability
Standby supply current: max. 6 µA over
temperature range
Operative junction temp.: from -40 °C to 125 °C
Applications
Consumer
– STB, DVD, DVD recorders, TV, VCR, car
audio, LCD monitors
Networking
– XDSL, modems, DC-DC modules
Computer
– Optical storage, HD drivers, printers,
audio/graphic cards
Industrial and security
– Battery chargers, DC-DC converters, PLD,
PLA, FPGA, LED drivers
Description
The ST1S10 is a high efficiency step-down PWM
current mode switching regulator capable of
providing up to 3 A of output current. The device
operates with an input supply range from 2.5 V to
18 V and provides an adjustable output voltage
from 0.8 V (VFB) to 0.85 * VIN_SW [VOUT = VFB *
(1 + R1/R2)]. It operates either at a 900 kHz fixed
frequency or can be synchronized to an external
clock (from 400 kHz to 1.2 MHz). The high
switching frequency allows the use of tiny SMD
external components, while the integrated
synchronous rectifier eliminates the need for a
Schottky diode. The ST1S10 provides excellent
transient response, and is fully protected against
thermal overheating, switching overcurrent and
output short-circuit.
The ST1S10 is the ideal choice for point of load
regulators or LDO pre-regulation.
PowerSO-8
DFN8 (4 x 4 mm)
Table 1. Device summary
Part number
Order codes
DFN8 (4 x 4 mm) PowerSO-8
ST1S10 ST1S10PUR ST1S10PHR
www.st.com

Contents ST1S10
2/30 DocID13844 Rev 6
Contents
1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 External components selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Output capacitor (VOUT > 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
5.4 Output capacitor (0.8 V < VOUT < 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5 Output voltage selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.6 Inductor (VOUT > 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.7 Inductor (0.8 V < VOUT < 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.8 Function operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.8.1 Sync operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.8.2 Inhibit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.8.3 OCP (overcurrent protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.8.4 SCP (short-circuit protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.8.5 SCP and OCP operation with high capacitive load . . . . . . . . . . . . . . . . 14
6 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Thermal considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

DocID13844 Rev 6 3/30
ST1S10 Contents
30
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.1 Power SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.2 DFN8 (4 x 4) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

List of tables ST1S10
4/30 DocID13844 Rev 6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 7. Power SO-8 (exposed pad) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8. Power SO-8 (exposed pad) tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 9. DFN8 (4 x 4) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 10. DFN8 (4 x 4) tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 11. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

DocID13844 Rev 6 5/30
ST1S10 List of figures
30
List of figures
Figure 1. Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Pin connections (top view for PowerSO-8, bottom view for DFN8) . . . . . . . . . . . . . . . . . . . 7
Figure 3. Application schematic for heavy capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4. Application schematic for low output voltage (VOUT < 2.5 V) and 2.5 V < VIN < 8 V . . . . . 16
Figure 5. Application schematic for low output voltage (VOUT < 2.5 V) and 8 V < VIN < 16 V . . . . . . 16
Figure 6. PCB layout suggestion - top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 7. PCB layout suggestion - bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 8. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 9. Voltage feedback vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 10. Oscillator frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11. Max. duty cycle vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 12. Inhibit threshold vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 13. Reference line regulation vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14. Reference load regulation vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 15. ON mode quiescent current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 16. Shutdown mode quiescent current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 17. PMOS ON resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 18. NMOS ON resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 19. Efficiency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 20. Efficiency vs. output current at Vout = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 21. Efficiency vs. output current at Vout = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 22. Efficiency vs. output current at Vout = 12 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 23. Power SO-8 (exposed pad) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 24. Power SO-8 (exposed pad) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 25. Power SO-8 (exposed pad) tape and reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 26. DFN8 (4 x 4) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 27. DFN8 (4 x 4) tape and reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
12V
ST1S10
iii
stc AGND PGND
FE
R1
R2
“'1
Application circuit ST1S10
6/30 DocID13844 Rev 6
1 Application circuit
Figure 1. Typical application circuit
ST1S10
12V
L1
3.3µH
C1
4.7µF
SW
FB
C2
22µF
VIN_SW
SYNC
EN
5V – 3A
R1
R2
VIN_A
AGND PGND
C3
0.1µF
ST1S10
12V
L1
3.3µH
C1
4.7µF
SW
FB
C2
22µF
VIN_SW
SYNC
EN
5V – 3A5V – 3A
R1
R2
VIN_A
AGND PGND
C3
0.1µF
| :I
:l
————8:|
Jsj
:1
I:
I:
:4777
CQGC
3333
csmzu
DocID13844 Rev 6 7/30
ST1S10 Pin configuration
30
2 Pin configuration
Figure 2. Pin connections (top view for PowerSO-8, bottom view for DFN8)
PowerSO-8
DFN8 (4x4)
Table 2. Pin description
Pin no. Symbol Name and function
1V
IN_A Analog input supply voltage to be tied to VIN supply source
2 INH (EN) Inhibit pin active low. Connect to VIN_A if not used
3V
FB
Feedback voltage for connection to external voltage divider to set the VOUT
from 0.8V up to 0.85*VIN_SW. (see Section 5.5: Output voltage selection on
page 13)
4 AGND Analog ground
5 SYNC
Synchronization and frequency select. Connect SYNC to GND for 900 kHz
operation, or to an external clock from 400 kHz to 1.2 MHz. (see Section 5.8.1:
Sync operation on page 14)
6V
IN_SW Power input supply voltage to be tied to VIN power supply source
7 SW Switching node to be connected to the inductor
8 PGND Power ground
epad epad Exposed pad to be connected to ground
Maximum ratings ST1S10
8/30 DocID13844 Rev 6
3 Maximum ratings
Note: Absolute maximum ratings are the values beyond which damage to the device may occur.
Functional operation under these conditions is not implied.
Table 3. Absolute maximum ratings
Symbol Parameter Value Unit
VIN_SW Positive power supply voltage -0.3 to 20 V
VIN_A Positive supply voltage -0.3 to 20 V
VINH Inhibit voltage -0.3 to VIN_A V
VSW Output switch voltage -0.3 to 20 V
VFB Feedback voltage -0.3 to 2.5 V
IFB FB current -1 to +1 mA
Sync Synchronization -0.3 to 6 V
TSTG Storage temperature range -40 to 150 °C
TOP Operating junction temperature range -40 to 125 °C
Table 4. Thermal data
Symbol Parameter PowerSO-8 DFN8 Unit
RthJA Thermal resistance junction ambient 40 40 °C/W
RthJC Thermal resistance junction case 12 4 °C/W
Table 5. ESD protection
Symbol Test condition Value Unit
ESD
HBM 2 kV
CDM 500 V
MM 200 V

DocID13844 Rev 6 9/30
ST1S10 Electrical characteristics
30
4 Electrical characteristics
VIN = VIN_SW = VIN_A = VINH = 12 V, VSYNC = GND, VOUT = 5 V, IOUT = 10 mA,
CIN = 4.7 µF +0.1 µF, COUT = 22 µF, L1 = 3.3 µH, TJ = -40 to 125 °C (unless otherwise
specified, refer to the typical application circuit. Typical values assume TJ = 25 °C).
Table 6. Electrical characteristics
Symbol Parameter Test conditions Min. Typ. Max. Unit
VFB Feedback voltage
TJ = 25 °C 784 800 816 mV
TJ = -25 °C to 125 °C 776 800 824 mV
IFB VFB pin bias current 600 nA
IQQuiescent current
VINH > 1.2 V, not switching 1.5 2.5 mA
VINH < 0.4 V 2 6 µA
IOUT Output current(1) VIN = 2.5 V to 18 V VOUT =
0.8 V to 13.6 V (2) 3.0 A
VINH Inhibit threshold
Device ON 1.2 V
Device OFF 0.4 V
IINH Inhibit pin current 2 µA
%VOUT/VIN Reference line regulation 2.5 V < VIN < 18 V 0.4 %VOUT/
VIN
%VOUT/
IOUT
Reference load regulation 10 mA < IOUT < 3 A 0.5 %VOUT/
IOUT
PWM fs PWM switching frequency VFB = 0.7 V, Sync = GND
TJ = 25 °C 0.7 0.9 1.1 MHz
DMAX Maximum duty cycle(2) 85 90 %
RDSon-N NMOS switch on resistance ISW = 750 mA 0.10
RDSon-P PMOS switch on resistance ISW = 750 mA 0.12
ISWL Switch current limitation 5.0 A
Efficiency
IOUT = 100 mA to 300 mA 85 %
IOUT = 300 mA to 3 A 90 %
TSHDN Thermal shutdown 150 °C
THYS Thermal shutdown hysteresis 15 °C
VOUT/IOUT Output transient response 100 mA < IOUT < 1 A, tR = tF
500 ns 5%V
O
VOUT/IOUT
@IO=short
Short-circuit removal response
(overshot) 10 mA < IOUT < short 10 %VO
FSYNC SYNC frequency capture range VIN = 2.5 V to 18 V, VSYNC =
0 to 5 V 0.4 1.2 MHz
SYNCWD SYNC pulse width VIN = 2.5 V to 18 V 250 ns
VIL_SYNC SYNC input threshold low VIN = 2.5 V to 18 V 0.4 V

Electrical characteristics ST1S10
10/30 DocID13844 Rev 6
VIH_SYNC SYNC input threshold high VIN = 2.5 V to 18 V 1.6 V
IIL, IIH SYNC input current VIN = 2.5 V to 18 V, VSYNC =
0 or 5 V -10 +10 µA
UVLO Under voltage lock-out threshold
VIN rising 2.3 V
Hysteresis 200 mV
1. Guaranteed by design, but not tested in production.
2. See Section 5.5: Output voltage selection for maximum duty cycle conditions.
Table 6. Electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit

DocID13844 Rev 6 11/30
ST1S10 Application information
30
5 Application information
5.1 Description
The ST1S10 is a high efficiency synchronous step-down DC-DC converter with inhibit
function. It provides up to 3 A over an input voltage range of 2.5 V to 18 V, and the output
voltage can be adjusted from 0.8 V up to 85% of the input voltage level. The synchronous
rectification removes the need for an external Schottky diode and allows higher efficiency
even at very low output voltages.
A high internal switching frequency (0.9 MHz) allows the use of tiny surface-mount
components, as well as a resistor divider to set the output voltage value. In typical
application conditions, only an inductor and 3 capacitors are required for proper operation.
The device can operate in PWM mode with a fixed frequency or synchronized to an external
frequency through the SYNC pin. The current mode PWM architecture and stable operation
with low ESR SMD ceramic capacitors results in low, predictable output ripple. No external
compensation is needed.
To maximize power conversion efficiency, the ST1S10 works in pulse skipping mode at light
load conditions and automatically switches to PWM mode when the output current
increases.
The ST1S10 is equipped with thermal shutdown protection activated at 150 °C (typ.).
Cycle-by-cycle short-circuit protection provides protection against shorted outputs for the
application and the regulator. An internal soft start for start-up current limiting and power ON
delay of 275 µs (typ.) helps to reduce inrush current during start-up.
5.2 External components selection
Input capacitor
The ST1S10 features two VIN pins: VIN_SW for the power supply input voltage where the
switching peak current is drawn, and VIN_A to supply the ST1S10 internal circuitry and
drivers.
The VIN_SW input capacitor reduces the current peaks drawn from the input power supply
and reduces switching noise in the IC. A high power supply source impedance requires
larger input capacitance.
For the VIN_SW input capacitor the RMS current rating is a critical parameter that must be
higher than the RMS input current. The maximum RMS input current can be calculated
using the following equation:
Equation 1
where
is the expected system efficiency, D is the duty cycle and IO is the output DC
current. The duty cycle can be derived using Equation 2.
η
D
η
D2
-DII
22
ORMS
=
η
D
η
D2
-DII
22
ORMS
=

Application information ST1S10
12/30 DocID13844 Rev 6
Equation 2
D = (VOUT + VF) / (VIN-VSW)
where VF is the voltage drop across the internal NMOS, and VSW represents the voltage
drop across the internal PDMOS. The minimum duty cycle (at VIN_max) and the maximum
duty cycle (at VIN_min) should be considered in order to determine the max IRMS flowing
through the input capacitor.
A minimum value of 4.7 µF for the VIN_SW and a 0.1 µF ceramic capacitor for the VIN_A are
suitable in most application conditions. A 10 µF or higher ceramic capacitor for the VIN_SW
and a 1 µF or higher for the VIN_A are recommended in cases of higher power supply source
impedance or where long wires are needed between the power supply source and the VIN
pins. The above higher input capacitor values are also recommended in cases where an
output capacitive load is present (47 µF < CLOAD < 100 µF), which could impact the
switching peak current drawn from the input capacitor during the start-up transient.
In cases of very high output capacitive loads (CLOAD > 100 µF), all input/output capacitor
values shall be modified as described in Section 5.8.5: SCP and OCP operation with high
capacitive load.
The input ceramic capacitors should have a voltage rating in the range of 1.5 times the
maximum input voltage and be located as close as possible to VIN pins.
5.3 Output capacitor (VOUT > 2.5 V)
The most important parameters for the output capacitor are the capacitance, the ESR and
the voltage rating. The capacitance and the ESR affect the control loop stability, the output
ripple voltage and transient response of the regulator.
The ripple due to the capacitance can be calculated with the following equation:
Equation 3
VRIPPLE(C) = (0.125 x ISW) / (FS x COUT)
where FS is the PWM switching frequency and
ISW is the inductor peak-to-peak switching
current, which can be calculated as:
Equation 4
ISW = [(VIN - VOUT) / (FS x L)] x D
where D is the duty cycle.
The ripple due to the ESR is given by:
Equation 5
VRIPPLE(ESR) = ISW x ESR
The equations above can be used to define the capacitor selection range, but final values
should be verified by testing an evaluation circuit.
Lower ESR ceramic capacitors are usually recommended to reduce the output ripple
voltage. Capacitors with higher voltage ratings have lower ESR values, resulting in lower
output ripple voltage.

DocID13844 Rev 6 13/30
ST1S10 Application information
30
Also, the capacitor ESL value impacts the output ripple voltage, but ceramic capacitors
usually have very low ESL, making ripple voltages due to the ESL negligible. In order to
reduce ripple voltages due to the parasitic inductive effect, the output capacitor connection
paths should be kept as short as possible.
The ST1S10 has been designed to perform best with ceramic capacitors. Under typical
application conditions a minimum ceramic capacitor value of 22 µF is recommended on the
output, but higher values are suitable considering that the control loop has been designed to
work properly with a natural output LC frequency provided by a 3.3 µH inductor and 22 µF
output capacitor. If the high capacitive load application circuit shown in Figure 3 is used,
a 47 µF (or 2 x 22 µF capacitors in parallel) could be needed as described in Section 5.8.5:
SCP and OCP operation with high capacitive load.
The use of ceramic capacitors with voltage ratings in the range of 1.5 times the maximum
output voltage is recommended.
5.4 Output capacitor (0.8 V < VOUT < 2.5 V)
For applications with lower output voltage levels (Vout < 2.5 V) the output capacitance and
inductor values should be selected in a way that improves the DC-DC control loop behavior.
In this output condition two cases must be considered: VIN > 8 V and VIN < 8 V.
For VIN < 8 V the use of 2 x 22 µF capacitors in parallel to the output is recommended, as
shown in Figure 4.
For VIN > 8 V, a 100 µF electrolytic capacitor with ESR < 0.1 should be added in parallel to
the 2 x 22 µF output capacitors as shown in Figure 5.
5.5 Output voltage selection
The output voltage can be adjusted from 0.8 V up to 85% of the input voltage level by
connecting a resistor divider (see R1 and R2 in the typical application circuit) between the
output and the VFB pin. A resistor divider with R2 in the range of 20 k is a suitable
compromise in terms of current consumption. Once the R2 value is selected, R1 can be
calculated using the following equation:
Equation 6
R1 = R2 x (VOUT - VFB) / VFB
where VFB = 0.8 V (typ.).
Lower values are suitable as well, but will increase current consumption. Be aware that duty
cycle must be kept below 85% at all application conditions, so that:
Equation 7
D = (VOUT + VF) / (VIN-VSW) < 0.85
where VF is the voltage drop across the internal NMOS, and VSW represents the voltage
drop across the internal PDMOS.
Note that once the output current is fixed, higher VOUT levels increase the power dissipation
of the device leading to an increase in the operating junction temperature. It is
recommended to select a VOUT level which maintains the junction temperature below the

Application information ST1S10
14/30 DocID13844 Rev 6
thermal shut-down protection threshold (150°C typ.) at the rated output current. The
following equation can be used to calculate the junction temperature (TJ):
Equation 8
TJ = {[VOUT x IOUT x RthJA x (1-)] / +TAMB
where RthJA is the junction to ambient thermal resistance,
is the efficiency at the rated
IOUT current and TAMB is the ambient temperature.
To ensure safe operating conditions the application should be designed to keep TJ < 140°C.
5.6 Inductor (VOUT > 2.5 V)
The inductor value fixes the ripple current flowing through output capacitor and switching
peak current. The ripple current should be kept in the range of 20-40% of IOUT_MAX (for
example it is 0.6 - 1.2 A at IOUT = 3 A). The approximate inductor value can be obtained with
the following equation:
Equation 9
L = [(VIN - VOUT) / ISW] x TON
where TON is the ON time of the internal switch, given by:
TON = D/FS
The inductor should be selected with saturation current (ISAT) equal to or higher than the
inductor peak current, which can be calculated with the following equation:
Equation 10
IPK = IO + (ISW/2), ISAT IPK
The inductor peak current must be designed so that it does not exceed the switching current
limit.
5.7 Inductor (0.8 V < VOUT < 2.5 V)
For applications with lower output voltage levels (Vout < 2.5 V) the description in the
previous section is still valid but it is recommended to keep the inductor values in a range
from 1µH to 2.2 µH in order to improve the DC-DC control loop behavior, and increase the
output capacitance depending on the VIN level as shown in Figure 4 and Figure 5. In most
application conditions a 2.2 µH inductor is the best compromise between DC-DC control
loop behavior and output voltage ripple.
5.8 Function operation
5.8.1 Sync operation
The ST1S10 operates at a fixed frequency or can be synchronized to an external frequency
with the SYNC pin. The ST1S10 switches at a frequency of 900 kHz when the SYNC pin is
connected to ground, and can synchronize the switching frequency between 400 kHz to 1.2
MHz from an external clock applied to the SYNC pin. When the SYNC feature is not used,

DocID13844 Rev 6 15/30
ST1S10 Application information
30
this pin must be connected to ground with a path as short as possible to avoid any possible
noise injected in the SYNC internal circuitry.
5.8.2 Inhibit function
The inhibit pin can be used to turn OFF the regulator when pulled down, thus drastically
reducing the current consumption down to less than 6 µA. When the inhibit feature is not
used, this pin must be tied to VIN to keep the regulator output ON at all times. To ensure
proper operation, the signal source used to drive the inhibit pin must be able to swing above
and below the specified thresholds listed in the electrical characteristics section under VINH.
Any slew rate can be used to drive the inhibit pin.
5.8.3 OCP (overcurrent protection)
The ST1S10 DC-DC converter is equipped with a switch overcurrent protection. In order to
provide protection for the application and the internal power switches and bonding wires, the
device goes into a shutdown state if the switch current limit is reached and is kept in this
condition for the TOFF period (TOFF(OCP) = 135 µs typ.) and turns on again for the TON period
(TON(OCP) = 22 µs typ.) under typical application conditions. This operation is repeated cycle
by cycle. Normal operation is resumed when no overcurrent is detected.
5.8.4 SCP (short-circuit protection)
In order to protect the entire application and reduce the total power dissipation during an
overload or an output short-circuit condition, the device is equipped with dynamic short-
circuit protection which works by internally monitoring the VFB (feedback voltage).
In the event of an overload or output short-circuit, if the VOUT voltage is reduced causing the
feedback voltage (VFB) to drop below 0.3 V (typ.), the device goes into shutdown for the
TOFF time (TOFF(SCP) = 288 µs typ.) and turns on again for the TON period
(TON(SCP) = 130 µs typ.). This operation is repeated cycle by cycle, and normal operation is
resumed when no overload is detected (VFB > 0.3 V typ.) for the full TON period.
This dynamic operation can greatly reduce the power dissipation in overload conditions,
while still ensuring excellent power-on startup in most conditions.
5.8.5 SCP and OCP operation with high capacitive load
Thanks to the OCP and SCP circuit, ST1S10 is strongly protected against damage from
short-circuit and overload.
However, a highly capacitive load on the output may cause difficulties during start-up. This
can be resolved by using the modified application circuit shown in Figure 3, in which
a minimum of 10 µF for C1 and a 4.7 µF ceramic capacitor for C3 are used. Moreover, for
CLOAD > 100 µF, it is necessary to add the C4 capacitor in parallel to the upper voltage
divider resistor (R1) as shown in Figure 3. The recommended value for C4 is 4.7 nF.
Note that C4 may impact the control loop response and should be added only when
a capacitive load higher than 100 µF is continuously present. If the high capacitive load is
variable or not present at all times, in addition to C4 an increase in the output ceramic
capacitor C2 from 22 µF to 47 µF (or 2 x 22 µF capacitors in parallel) is recommended. Also
in this case it is suggested to further increase the input capacitors to a minimum of 10 µF for
C1 and a 4.7 µF ceramic capacitor for C3 as shown in Figure 3.
12V
ST1S1O
3,1- 1 ii
smc AGND PGND
(VouT VIN
vmApplication information ST1S10
16/30 DocID13844 Rev 6
(*) see OCP and SCP descriptions for C2 and C4 selection.
Figure 3. Application schematic for heavy capacitive load
ST1S10
12V
L1
3.3µH
C1
10µF
SW
FB
VIN_SW
SYNC
EN R1
R2
VIN_A
AGND PGND
C3
4.7µF
C2(*)
22µF
5V – 3A
C4 (*)
4.7nF
CLOAD
LOAD
Output Load
ST1S10
12V
L1
3.3µH
C1
10µF
SW
FB
VIN_SW
SYNC
EN R1
R2
VIN_A
AGND PGND
C3
4.7µF
C2(*)
22µF
5V – 3A5V – 3A
C4 (*)
4.7nF
CLOAD
CLOAD
LOAD
Output Load
Figure 4. Application schematic for low output voltage (VOUT < 2.5 V) and 2.5 V < VIN < 8 V
ST1S10
VIN<8V
L1
2.2µH
C1
10µF
SW
FB
VIN_SW
SYNC
EN R1
R2
VIN_A
AGND PGND
C3
0.1µF
C2
2x22µF
0.8V<VOUT<2.5V
ST1S10
VIN<8V
L1
2.2µH
C1
10µF
SW
FB
VIN_SW
SYNC
EN R1
R2
VIN_A
AGND PGND
C3
0.1µF
C2
2x22µF
0.8V<VOUT<2.5V
Figure 5. Application schematic for low output voltage (VOUT < 2.5 V) and 8 V < VIN < 16 V
ST1S10
8V<VIN<16V
L1
2.2µH
C1
10µF
SW
FB
VIN_SW
SYNC
EN R1
R2
VIN_A
AGND PGND
C3
4.7µF
C2
2x22µF
0.8V<VOUT<2.5V
+
C5
100µF
Electrolytic
ESR<0.1Ohm
ST1S10
8V<VIN<16V
L1
2.2µH
C1
10µF
SW
FB
VIN_SW
SYNC
EN R1
R2
VIN_A
AGND PGND
C3
4.7µF
C2
2x22µF
0.8V<VOUT<2.5V
+
C5
100µF
Electrolytic
ESR<0.1Ohm
39mm
and outgut cagacltor CI
to bottom layer
DocID13844 Rev 6 17/30
ST1S10 Layout considerations
30
6 Layout considerations
The layout is an important step in design for all switching power supplies.
High speed operation (900 kHz) of the ST1S10 device demands careful attention to PCB
layout. Care must be taken in board layout to get device performance, otherwise the
regulator could show poor line and load regulation, stability issues as well as EMI problems.
It is critical to provide a low inductance, impedance ground path. Therefore, use wide and
short traces for the main current paths.
The input capacitor must be placed as close as possible to the IC pins as well as the
inductor and output capacitor. Use a common ground node for power ground and a different
one for control ground (AGND) to minimize the effects of ground noise. Connect these
ground nodes together underneath the device and make sure that small signal components
returning to the AGND pin and do not share the high current path of CIN and COUT
.
The feedback voltage sense line (VFB) should be connected right to the output capacitor and
routed away from noisy components and traces (e.g.: SW line). Its trace should be
minimized and shielded by a guard-ring connected to the ground.
Figure 6. PCB layout suggestion - top
V
FB
guard-ring
Input capacitor C1 must be placed
as close as possible to the IC
pins as well as the inductor L1
and output capacitor C2
Vias from thermal pad
to bottom layer
39mm
47mm
CN1=Input power supply
CN2=Enable/Disable
CN3=Input sync.
CN4=V
OUT
V
FB
guard-ring
Input capacitor C1 must be placed
as close as possible to the IC
pins as well as the inductor L1
and output capacitor C2
Vias from thermal pad
to bottom layer
39mm
47mm
CN1=Input power supply
CN2=Enable/Disable
CN3=Input sync.
CN4=V
OUT
for mmr ground
Layout considerations ST1S10
18/30 DocID13844 Rev 6
Thermal considerations
The lead frame die pad, of the ST1S10, is exposed at the bottom of the package and must
be soldered directly to a properly designed thermal pad on the PCB, the addition of thermal
vias from the thermal pad to an internal ground plane will help increase power dissipation.
Figure 7. PCB layout suggestion - bottom
Common ground node
for power ground
I
IN
I
OUT
Power Ground
Common ground node
for power ground
Common ground node
for power ground
I
IN
I
OUT
Power Ground
SYNC v INJ
V IN_SW
Y
Sync Block
: (lawn _ MDSFET
cumnm
LDEIE
meomrol
use
DMD
w mermalm
_ + Down 0‘ |
_ l nver l MMDS
SDFTSTART SHUTDDWN
u u
we mu ABND PBND
5w
DocID13844 Rev 6 19/30
ST1S10 Diagram
30
7 Diagram
Figure 8. Block diagram
Figure 9. Voltage feedback vs. temperature Figure 10. Oscillator frequency vs. temperature
750 725 0 25 50 75 100 125
TEMPERATURE re]
Du
mmmmmm
Figure 11. Max. duty cycle vs. temperature Figure 12. Inhibit threshold vs. temperature
Typical performance characteristics ST1S10
20/30 DocID13844 Rev 6
8 Typical performance characteristics
Unless otherwise specified, refer to the typical application circuit under the following
conditions: TJ = 25 °C, VIN = VIN-SW = VIN-A = VINH = 12 V, VSYNC = GND, VOUT = 5 V,
IOUT = 10 mA, CIN = 4.7 µF + 0.1 µF, COUT = 22 µF, L1 = 3.3 µH.
Figure 9. Voltage feedback vs. temperature Figure 10. Oscillator frequency vs. temperature
Figure 11. Max. duty cycle vs. temperature Figure 12. Inhibit threshold vs. temperature
760
770
780
790
800
810
820
830
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
V
FB
[mV]
V
IN
=V
INH
=12V, V
OUT
=0.8V, I
OUT
=10mA
760
770
780
790
800
810
820
830
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
V
FB
[mV]
760
770
780
790
800
810
820
830
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
V
FB
[mV]
V
IN
=V
INH
=12V, V
OUT
=0.8V, I
OUT
=10mA
0.6
0.7
0.8
0.9
1
1.1
1.2
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
Frequency [MHz]
V
IN-A
=V
IN-SW
=V
INH
=12V, V
FB
=0V
0.6
0.7
0.8
0.9
1
1.1
1.2
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
Frequency [MHz]
V
IN-A
=V
IN-SW
=V
INH
=12V, V
FB
=0V
80
82
84
86
88
90
92
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
Duty Cycle [%]
V
IN-A
=V
IN-SW
=V
INH
=12V, V
FB
=0V
80
82
84
86
88
90
92
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
Duty Cycle [%]
V
IN-A
=V
IN-SW
=V
INH
=12V, V
FB
=0V
0
0.2
0.4
0.6
0.8
1
1.2
1.4
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
V
INH
(V)
V
IN-A
=V
IN-SW
=2.5V, V
OUT
=0.8V, I
OUT
=10mA
0
0.2
0.4
0.6
0.8
1
1.2
1.4
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
V
INH
(V)
V
IN-A
=V
IN-SW
=2.5V, V
OUT
=0.8V, I
OUT
=10mA
Figure 13. Reference line regulation vs.
Figure 14. Reference load regulation vs.
Load [Vu‘burllaul]
25 50 75
TEMPERATURE [‘0]
100 125
Figure 15. ON mode quiescent current vs.
Figure 16. Shutdown mode quiescent current
HIM)
D—Nubmm
Figure 17. PMOS ON resistance vs. temperature
Figure 18. NMOS ON resistance vs. temperature
DocID13844 Rev 6 21/30
ST1S10 Typical performance characteristics
30
Figure 13. Reference line regulation vs.
temperature
Figure 14. Reference load regulation vs.
temperature
-0.2
-0.1
0
0.1
0.2
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
Line [%(V
OUT
/V
IN
)]
V
IN-A
=V
IN-SW
=V
INH
from 2.5 to 20V, V
OUT
=0.8V, I
OUT
=10mA
-0.2
-0.1
0
0.1
0.2
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
Line [%(V
OUT
/V
IN
)]
V
IN-A
=V
IN-SW
=V
INH
from 2.5 to 20V, V
OUT
=0.8V, I
OUT
=10mA
-0.5
-0.2
0.1
0.4
0.7
1
1.3
-25 0 25 50 75 100 125
TEMPERATURE [°C]
Load [%V
OUT
/I
OUT
]
VIN-A=VIN-SW=VINH=12V, IOUT from 10mA to 3A
-0.5
-0.2
0.1
0.4
0.7
1
1.3
-25 0 25 50 75 100 125
TEMPERATURE [°C]
Load [%V
OUT
/I
OUT
]
VIN-A=VIN-SW=VINH=12V, IOUT from 10mA to 3A
Figure 15. ON mode quiescent current vs.
temperature
Figure 16. Shutdown mode quiescent current
vs. temperature
Figure 17. PMOS ON resistance vs. temperature Figure 18. NMOS ON resistance vs. temperature
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
I
Q
(mA)
V
IN-A
=V
IN-SW
=12V, V
INH
=1.2V, V
OUT
=0.8V
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
I
Q
(mA)
V
IN-A
=V
IN-SW
=12V, V
INH
=1.2V, V
OUT
=0.8V
0
1
2
3
4
5
6
7
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
I
Q
(µA)
V
IN-A
=V
IN-SW
=12V, V
INH
=GND, V
OUT
=0.8V
0
1
2
3
4
5
6
7
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
I
Q
(µA)
V
IN-A
=V
IN-SW
=12V, V
INH
=GND, V
OUT
=0.8V
20
70
120
170
220
270
320
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
R
DSON
-P[m]
V
IN
=12V, I
SW
=750mA
20
70
120
170
220
270
320
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
R
DSON
-P[m]
V
IN
=12V, I
SW
=750mA
50
60
70
80
90
100
110
120
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
RDSON-N[m]
V
IN
=12V, I
SW
=750mA
50
60
70
80
90
100
110
120
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
RDSON-N[m]
V
IN
=12V, I
SW
=750mA
Figure 19. Effi
ency vs. temperature
Figure 20. Efficiency vs. output current
Figure 21. Efficiency vs. output current
Figure 22. Efficiency vs. output current at
Typical performance characteristics ST1S10
22/30 DocID13844 Rev 6
Figure 19. Efficiency vs. temperature Figure 20. Efficiency vs. output current
at Vout = 5 V
50
60
70
80
90
100
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
EFFICIENCY [%]
V
IN-A
=V
IN-SW
=V
INH
=12V, V
OUT
=5V, I
OUT
=3A
50
60
70
80
90
100
-50 -25 0 25 50 75 100 125
TEMPERATURE [°C]
EFFICIENCY [%]
V
IN-A
=V
IN-SW
=V
INH
=12V, V
OUT
=5V, I
OUT
=3A
50
60
70
80
90
100
0 0.5 1 1.5 2 2.5 3
OUTPUT CURRENT [A]
EFFICIENCY [%]
V
IN-A
=V
IN-SW
=V
INH
=12V, V
OUT
=5V, T
J
=25°C
50
60
70
80
90
100
0 0.5 1 1.5 2 2.5 3
OUTPUT CURRENT [A]
EFFICIENCY [%]
V
IN-A
=V
IN-SW
=V
INH
=12V, V
OUT
=5V, T
J
=25°C
Figure 21. Efficiency vs. output current
at Vout = 3.3 V
Figure 22. Efficiency vs. output current at
Vout = 12 V
50
60
70
80
90
100
0 0.5 1 1.5 2 2.5 3
OUTPUT CURRENT [A]
EFFICIENCY [%]
V
IN-A
=V
IN-SW
=V
INH
=5V, V
OUT
=3.3V, T
J
=25°C
50
60
70
80
90
100
0 0.5 1 1.5 2 2.5 3
OUTPUT CURRENT [A]
EFFICIENCY [%]
V
IN-A
=V
IN-SW
=V
INH
=5V, V
OUT
=3.3V, T
J
=25°C
50
60
70
80
90
100
00.511.522.53
OUTPUT CURRENT [A]
EFFICIENCY [%]
V
IN-A
=V
IN-SW
=V
INH
=16V, V
OUT
=12V, T
J
=25°C
50
60
70
80
90
100
00.511.522.53
OUTPUT CURRENT [A]
EFFICIENCY [%]
V
IN-A
=V
IN-SW
=V
INH
=16V, V
OUT
=12V, T
J
=25°C
E1
A1
DocID13844 Rev 6 23/30
ST1S10 Package information
30
9 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
9.1 Power SO-8 package information
Figure 23. Power SO-8 (exposed pad) package outline
7195016_D
Package information ST1S10
24/30 DocID13844 Rev 6
Note: Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash,
protrusions or gate burrs shall not exceed 0.15mm in total (both side).
Dimension “E1” does not include interlead flash or protrusions.
Interlead flash or protrusions shall not exceed 0.25mm per side.
The size of exposed pad is variable depending of leadframe design pad size.
End user should verify “D1” and “E2” dimensions for each device application.
Table 7. Power SO-8 (exposed pad) package mechanical data
Symbol
Dimensions (mm)
Min. Typ. Max.
A1.70
A1 0.00 0.15
A2 1.25
b 0.31 0.51
c 0.17 0.25
D 4.80 4.90 5.00
D1 ACCORDING TO PAD SIZE
E 5.80 6.00 6.20
E1 3.80 3.90 4.00
E2 ACCORDING TO PAD SIZE
e1.27
h 0.25 0.50
L 0.40 1.27
K0 8
ccc 0.10
6.20
FDDTPRINT
5,70
0,90
0,90
0‘57 {8X}
7 6 5
3.50 *
Q
[Q
N
8 3 4
7.27
DocID13844 Rev 6 25/30
ST1S10 Package information
30
Figure 24. Power SO-8 (exposed pad) recommended footprint
Nels Drawmg not m some
Package information ST1S10
26/30 DocID13844 Rev 6
Figure 25. Power SO-8 (exposed pad) tape and reel dimensions
Table 8. Power SO-8 (exposed pad) tape and reel mechanical data
Symbol
Dimensions (mm)
Min. Typ. Max.
A330
C 12.8 13.2
D20.2
N60
T22.4
Ao 8.1 8.5
Bo 5.5 5.9
Ko 2.1 2.3
Po 3.9 4.1
P7.9 8.1
PW , m EXPasm m
L a»
MM
454,
F/NY/D/ L
9/-
DocID13844 Rev 6 27/30
ST1S10 Package information
30
9.2 DFN8 (4 x 4) package information
Figure 26. DFN8 (4 x 4) package outline
Table 9. DFN8 (4 x 4) package mechanical data
Symbol
Dimensions (mm)
Min. Typ. Max.
A 0.80 0.90 1.00
A1 0 0.02 0.05
A3 0.20
b 0.23 0.30 0.38
D 3.90 4.00 4.10
D2 2.82 3.00 3.23
E 3.90 4.00 4.10
E2 2.05 2.20 2.30
e0.80
L 0.40 0.50 0.60
7869653B
Note Drawmg mm In scale
Package information ST1S10
28/30 DocID13844 Rev 6
Figure 27. DFN8 (4 x 4) tape and reel dimensions
Table 10. DFN8 (4 x 4) tape and reel mechanical data
Symbol
Dimensions (mm)
Min. Typ. Max.
A330
C 12.8 13.2
D20.2
N99 101
T14.4
Ao 4.35
Bo 4.35
Ko 1.1
Po 4
P8

DocID13844 Rev 6 29/30
ST1S10 Revision history
30
10 Revision history
Table 11. Document revision history
Date Revision Changes
28-Aug-2007 1 Initial release.
24-Sep-2007 2 Add RthJC on Table 4.
25-Oct-2007 3 Added new paragraph 6: Layout considerations.
16-Mar-2010 4 Updated PowerSO-8 package mechanical data.
31-May-2012 5
Updated SO-8 (epad) and DFN8 (4x4) mechanical data.
Changed temperature min from 25 °C to 40 °C in Table 4, and in
Section 4.
27-Mar-2015 6
Added Table 5: ESD protection on page 8.
Added and updated cross-references throughout document.
Updated titles of Figure 6 on page 17 and Figure 7 on page 18.
Updated Section 9: Package information on page 23 (updated/added
titles, headers, reformatted section).
Minor modifications throughout document.

ST1S10
30/30 DocID13844 Rev 6
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
Products related to this Datasheet
IC REG BUCK ADJ 3A POWERSO-8
IC REG BUCK ADJUSTABLE 3A 8DFN
BOARD EVAL BUCK REG ST1S10
BOARD DEMONSTRATION ST1S10
IC REG BUCK ADJUSTABLE 3A 8DFN
IC REG BUCK ADJUSTABLE 3A 8DFN
BOARD EVAL BASED ON ST1S10
IC REG BUCK ADJ 3A POWERSO-8
IC REG BUCK ADJ 3A POWERSO-8
BOARD EVAL BASED ON ST1S10
BOARD EVAL STP04CM05/ST1S10
IC REG BUCK ADJUSTABLE 3A 8SOPWR