XC6109 Series Datasheet by Torex Semiconductor Ltd

View All Related Products | Download PDF Datasheet
VSS ‘+ x + TOIREX
1/14
XC6109 Series
Voltage Detector with External Delay Type Capacitor
(No pull-up resistor needed for CMOS output products)
GENERAL DESCRIPTION
The XC6109 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming
technologies.
With the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an arbitrary
release delay time.
Using a small package (SSOT-24), the series is suited for high density mounting.
Both CMOS and N-channel open drain output configurations are available.
A
PPLICATIONS
Microprocessor reset circuitry
Charge voltage monitors
Memory battery back-up switch circuits
Power failure detection circuits
TYPICAL APPLICATION CIRCUIT
FEATURES
Highly Accurate : +2%
(Setting Voltage Accuracy>1.5V)
: +30mV
(Setting Voltage Accuracy<1.5V)
Low Power Consumption :
0.8
μ
A (detect, V
DF
=1.0V, V
IN
= 0.9V, TYP.)
0.9
μ
A (release, V
DF
=1.0V, V
IN
= 1.1V, TYP.)
Detect Voltage Range : 0.8V ~ 5.0V (0.1V increments)
Operating Voltage Range : 0.7V ~ 6.0V
Detect Voltage Temperature Characteristics
: ±100ppm/ OC (TYP.)
Output Configuration : CMOS or
N-channel open drain
Operating Temperature Range
: -40 OC ~ +85 OC
CMOS
Built-In Delay Circuit, Delay Pin Available
Package : SSOT-24
TYPICAL PERFORMANCE
CHARACTERISTICS
Release Delay Time vs. Delay Capacitance
XC6109xxxAN
0.1
1
10
100
1000
10000
0.0001 0.001 0.01 0.1 1
Delay Capacitance: Cd (μF)
Release Delay Time: TDR (ms)
VIN (MIN.)= 0.7V,VIN (M AX.) =6.0V
Tr=5μs, Ta=25
ETR0206_006
Delay Capacitance: Cd (μF)
VIN VSS SSOT—24 (TOP VIEW) .Ode u 0 ate XC6109®®®®®©-®
2/14
XC6109 Series
PIN NUMBER PIN NAME FUNCTION
1 VIN Input
2 VSS Ground
3 Cd Delay Capacitance
4 VOUT Output (Detect ”L”)
DESIGNATOR DESCRIPTION SYMBOL DESCRIPTION
C CMOS output
Output Configuration
N N-ch open drain output
Detect Voltage 08 ~ 50 e.g. 181.8V
Output Delay & Hysteresis A Built-in delay pin & hysteresis 5% (TYP.)
NR SSOT-24
⑤⑥- Packages
Taping Type (*2) NR-G SSOT-24 (Halogen & Antimony free)
PIN CONFIGURATION
PIN ASSIGNMENT
PRODUCT CLASSIFICATION
XC6109①②③④⑤⑥-⑦(*1)
O
r
de
rin
g
Inf
o
rm
at
i
o
n
(*1) The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.
(*2) The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales
office or representative. (Standard orientation: R-, Reverse orientation: L-)
VIN RSEN:RV‘RZ‘R3 m Compavamr \nvener VOUT RSEN:RV‘R2‘RJ m Cumparamv \rwenev TOIREX
3/14
XC6109
Series
PARAMETER SYMBOL RATINGS UNITS
Input Voltage VIN VSS - 0.3 ~ 7.0 V
Output Current IOUT 10 mA
XC6109C (*1) VSS - 0.3 ~ VIN + 0.3
Output Voltage XC6109N (*2) VOUT VSS - 0.3 ~ 7.0 V
Delay Pin Voltage VCD VSS-0.3 ~ VIN + 0.3 V
Delay Pin Current ICD 5.0 mA
Power Dissipation SSOT-24 Pd 150 mW
Operating Temperature Range Ta - 40 ~ + 85 OC
Storage Temperature Range Tstg - 40 ~ + 125 OC
A
BSOLUTE MAXIMUM RATINGS Ta = 2 5OC
BLOCK DIAGRAMS
(1) XC6109C (CMOS Output)
(2) XC6109N (N-ch Open Drain Output)
NOTE:
*1: CMOS output
*2: N-ch open drain output
4/14
XC6109 Series
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNIT CIRCUIT
Operating Voltage VIN VDF(T)=0.8~5.0V (*1) 0.7 - 6.0 V -
Detect Voltage VDF VDF(T)=0.8~5.0V E-1 V
Hysteresis Width VHYS VIN=1.0~6.0V VDF
x 0.02
VDF
x 0.05
VDF
x 0.08 V
VDF(T)=0.8~1.9V - 0.80 1.70
VDF(T)=2.0~3.9V - 0.90 1.90
Supply Current 1 ISS1 VIN=VDF x 0.9
VDF(T)=4.0~5.0V - 1.00 2.00
μA
VDF(T)=0.8~1.9V - 0.90 1.80
VDF(T)=2.0~3.9V - 1.10 2.00
Supply Current 2 ISS2 VIN=VDF x 1.1
VDF(T)=4.0~5.0V - 1.20 2.20
μA
VIN=0.7V
VDS=0.5V(Nch)
0.01
0.36
VIN=1.0V (*2)
VDS=0.5V(Nch)
0.1
0.7
VIN=2.0V (*3)
VDS=0.5V(Nch)
0.8
1.6
VIN=3.0V (*4)
VDS=0.5V(Nch)
1.2
2.0
IOUT1
VIN=4.0V (*5)
VDS=0.5V(Nch)
1.6
2.3
- mA
Output Current
IOUT2 (*6) VIN=VDFx1.1
VDS=0.5V (P-ch) E-2 mA
CMOS
output - 0.20 -
Leak
Current N-ch Open
Drain
Output
ILEAK V
IN=6.0V, VOUT=6.0V, Cd: Open
- 0.20 0.40
μA
UVDF/
Temperature
Characteristics
(
U
To p r
V
DF
)
-40 OC<Ta<85 OC - ±100 -
ppm/
O
C
Delay Resistance (*7) Rdelay VIN=6.0V, Cd=0V 1.6 2.0 2.4
MΩ
Delay Pin Sink Current ICD Cd=0.5V, VIN=0.7V 8 60 -
μA
VIN=1.0V 0.4 0.5 0.6 Delay Capacitance Pin
Threshold Voltage VTCD VIN=6.0V 2.9 3.0 3.1 V
Unspecified Operating
Voltage (*8) VUNS VIN=0~0.7V - 0.3 0.4 V
Detect Delay Time (*9) tDF0 VIN=6.0 down to 0.7V
Cd: Open - 30 230
μs
Release Delay Time
(*10) tDR0 VIN=0.7~6.0V
Cd: Open - 30 200
μs
ELECTRICAL CHARACTERISTICS
Ta = 2 5OC
NOTE:
*1: V
DF(T): Setting Detect Voltage
*2: V
DF(T)1.0V
*3: V
DF(T)2.0V
*4: V
DF(T)3.0V
*5: V
DF(T)4.0V
*6: This numerical value is applied only to the XC6109C series (CMOS output).
*7: Calculated from the voltage value and the current value of both ends of the resistor.
*8: The maximum voltage of the VOUT in the range of the VIN 0 to 0.7V. This numerical value is applied only to the XC6109C series
(CMOS output).
*9: Time which ranges from the state of VIN =VDF to the VOUT reaching 0.6V when the VIN falls without connecting to the Cd pin.
*10: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VIN rises without connecting to the Cd pin.
TOIREX
5/14
XC6109
Series
SYMBOL E-1 E-2
PARAMETER
SETTING DETECT
VOLTAGE
DETECT VOLTAGE (*1)
(V)
OUTPUT CURRENT (*2)
(mA)
VDF IOUT2
VDF(T) MIN. TYP. MAX. MIN. TYP.
0.8 0.770 0.800 0.830
0.9 0.870 0.900 0.930
1.0 0.970 1.000 1.030
-0.40 -0.20
1.1 1.070 1.100 1.130
1.2 1.170 1.200 1.230
1.3 1.270 1.300 1.330
1.4 1.370 1.400 1.430
-0.60 -0.30
1.5 1.470 1.500 1.530
1.6 1.568 1.600 1.632
1.7 1.666 1.700 1.734
1.8 1.764 1.800 1.836
1.9 1.862 1.900 1.938
-0.80 -0.40
2.0 1.960 2.000 2.040
2.1 2.058 2.100 2.142
2.2 2.156 2.200 2.244
2.3 2.254 2.300 2.346
2.4 2.352 2.400 2.448
2.5 2.450 2.500 2.550
2.6 2.548 2.600 2.652
2.7 2.646 2.700 2.754
2.8 2.744 2.800 2.856
2.9 2.842 2.900 2.958
-1.00 -0.50
3.0 2.940 3.000 3.060
3.1 3.038 3.100 3.162
3.2 3.136 3.200 3.264
3.3 3.234 3.300 3.366
3.4 3.332 3.400 3.468
3.5 3.430 3.500 3.570
3.6 3.528 3.600 3.672
3.7 3.626 3.700 3.774
3.8 3.724 3.800 3.876
3.9 3.822 3.900 3.978
-1.20 -0.60
4.0 3.920 4.000 4.080
4.1 4.018 4.100 4.182
4.2 4.116 4.200 4.284
4.3 4.214 4.300 4.386
4.4 4.321 4.400 4.488
4.5 4.410 4.500 4.590
4.6 4.508 4.600 4.692
4.7 4.606 4.700 4.794
4.8 4.704 4.800 4.896
4.9 4.802 4.900 4.998
5.0 4.900 5.000 5.100
-1.30 -0.65
VOLTAGE CHART
NOTE:
*1: When VDF(T)1.4V, the detection accuracy is ±30mV. When VDF(T)1.5V, the detection accuracy is ±2%.
*2: This numerical value is applied only to the XC6109C series (CMOS output).
I< vin="" vout="" xosloe="" senes="" gd="" vss="" cd="" vin="" vout="" x06109="" sena:="" e="" vss="" t="" ,9.="" vin="" vout="" x06109="" senes="" 31,="" 777'="" al="" vin="" vout="" xcsiob="" series="" ca="" vss="" ca="" vin="" %="" vout="" xcema="" senna="" vss="">
6/14
XC6109 Series
TEST CIRCUITS
Circuit 1 Circuit 2
Circuit 3 Circuit 4
Circuit 5 Circuit 6
Circuit 7 Circuit 8
R=100k
(No resistor needed for
CMOS output products)
R=100k
(No resistor needed for
CMOS output products)
R=100k
(No resistor needed for
CMOS output products)
Waveform Measurement Point
VIN
Cd
VSS
VOUT
XC6109 Series
A
VIN
Cd
VSS
VOUT A
XC6109 Series
VIN
Cd
VSS
VOUT
XC6109 Series
V
TOIREX
7/14
XC6109
Series
Delay Capacitance [Cd]
(μF)
Release Delay Time [tDR] (TYP.)
(ms)
Release Delay Time [tDR] (MIN. ~ MAX.) *1
(ms)
0.01 13.8 11.0 ~ 16.6
0.022 30.4 24.3 ~ 36.4
0.047 64.9 51.9 ~ 77.8
0.1 138 110 ~ 166
0.22 304 243~ 364
0.47 649 519 ~ 778
1 1380 1100 ~ 1660
OPERATIONAL EXPLANATION
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on the next page.
As an early state, the input voltage pin is applied sufficiently high voltage to the release voltage and the delay capacitance
(Cd) is charged to the input pin voltage. While the input pin voltage (VIN) starts dropping to reach the detect voltage
(VDF) (VIN > VDF), the output voltage (VOUT) keeps the “High” level (=VIN).
When the input pin voltage keeps dropping and becomes equal to the detect voltage (VIN = VDF), an N-ch transistor for
the delay capacitance discharge is turned ON, and starts to discharge the delay capacitance. For the internal circuit,
which uses the delay capacitance pin as power input, the reference voltage operates as a comparator of VIN, and the
output voltage changes into the “Low” level (VIN×0.1). The detect delay time (tDF) is defined as time which ranges
from VIN =VDF to the VOUT of “Low” level (especially, when the Cd pin is not connected: tDF0).
While the input pin voltage keeps below the detect voltage, and 0.7V or more, the delay capacitance is discharged to the
ground voltage (=VSS) level. Then, the output voltage (VOUT) maintains the “Low” level.
While the input pin voltage drops to 0.7V or less and it increases again to 0.7V or more, the output voltage may not be
able to maintain the “Low” level. Such an operation is called “Unspecified Operation”, and voltage which occurs at the
output pin voltage is defined as unstable operating voltage (VUNS).
While the input pin voltage increases more than 0.7V and it reaches to the release voltage level (VINVDF +VHYS), the
output voltage (VOUT) maintains the “Low” level.
When the input pin voltage continues to increase more than 0.7V up to the release voltage level (= VDF + VHYS), the N-ch
transistor for the delay capacitance discharge will be turned OFF, and the delay capacitance will be started discharging
via a delay resistor (Rdelay). The internal circuit, which uses the delay capacitance pin as power input, will operate as a
hysteresis comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic Threshold: VTHL=VSS) while the input pin voltage
keeps higher than the detect voltage (VIN > VDF).
While the input pin voltage becomes equal to the release voltage or higher and keeps the detect voltage or higher, the
delay capacitance (Cd) will be charged up to the input pin voltage. When the delay capacitance pin voltage (VCD)
reaches to the delay capacitance pin threshold voltage (VTCD), the output voltage changes into the “High” (=VIN) level.
tDR is defined as time which ranges from VIN =VDF+VHYS to the VOUT of “High” level (especially when the Cd pin is not
connected: tDR0). tDR can be given by the formula (1).
tDR =
Rdelay
×
Cd
×
In (1
VTCD / VIN) +tDR0 (1)
* In = a natural logarithm
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and
the delay capacitance pin threshold voltage is VIN /2 (TYP.)
tDR =Rdelay
×
Cd
×
0.69
(2)
* Rdelay is 2.0MΩ(TYP.)
As an example, presuming that the delay capacitance is 0.68μF, t DR is :
2.0
×
106
×
0.68
×
10-6
×
0.69=938(ms)
* Note that the release delay time may remarkably be short when the delay capacitance is not discharged to the ground
(=VSS) level because time described in is short.
While the input pin voltage is higher than the detect voltage (VIN > VDF), therefore, the output voltage maintains the
“High”(=VIN) level.
Release Delay Time Chart
* The release delay time values above are calculated by using the formula (2).
*1: The release delay time (tDR) is influenced by the delay capacitance Cd.
m N E: a, w ,
8/14
XC6109 Series
+
-
VIN
VOUT
Cd VSS
Vref
RSEN=R1+R2+R3
Rdelay
R1
R2
R3 M1 M3
M2
M5
M4
VIN
Cd
OPERATIONAL EXPLANATION (Continued)
Figure 1: Typical application circuit example
Figure 2: The timing chart of Figure 1
Input Voltage: VIN
Release Voltage: VDF+VHYS
Detect Voltage: VDF
Minimum Operating Voltage (0.7V)
Delay Capacitance Pin Voltage: VCD
Delay Capacitance Pin Threshold Voltage: VTCD
Output Pin Voltage: VOUT
④⑤
The circuit which uses the delay
Capacitance pin as power input.
N-ch transictor for the delay
Capacitance discharge.
Delay Capacitor [Cd]
VIN
VCD
VDF+VHYS
VTCD
VOUT
V‘NT: SBD T“ ca ,, cu VIN VSS vour RflOOkQ Vour vw :7 fl vm X T < m="" 3="" _,="" rsen:ri‘r2‘rj="" vpuh="" vow="" m="" toirex="">
9/14
XC6109
Series
NOTES ON USE
1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent
damage to the device.
2. The input pin voltage drops by the resistance between power supply and the VIN pin, and by through current at
operation of the IC. At this time, the operation may be wrong if the input pin voltage falls below the minimum operating
voltage range. In CMOS output, for output current, drops in the input pin voltage similarly occur. Oscillation of the
circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis
voltage. Note it especially when you use the IC with the VIN pin connected to a resistor.
3. Note that a rapid and high fluctuation of the input pin voltage may cause a wrong operation.
4. Power supply noise may cause operational function errors, Care must be taken to put the capacitor between VIN-GND
and test on the board carefully.
5. When there is a possibility of which the input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation with the
delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the VIN pin and
the Cd pin as the Figure 3 shown below.
6. When N-ch open drain output is used, output voltages VOUT at voltage detection and release are determined by a pull-up
resistor tied to the output pin. A resistance value of the pull-up resistor can be selected with referring to the followings.
(Refer to Figure 4)
During detection, the formula is given as
V
OUT=Vpull/(1+Rpull/RON)
where Vpull is pull-up voltage and RON (*1) is ON resistance of N-ch driver M5 (RON=VDS/IOUT1 from the electrical
characteristics table).
For example, when VIN=2.0V (*2), RON = 0.5/0.8×10-3=625Ω(MIN.) and if you want to get VOUT less than 0.1V when
Vpull=3.0V, Rpull can be calculated as follows;
Rpull=(Vpull /VOUT-1)×RON=(3/0.1-1)×62518kΩ
Therefore, pull-up resistance should be selected 18kΩ or higher.
(*1) VIN is smaller, RON is bigger
(*2) For the calculation, the lowest VIN should be used among of the VIN range
During release, the formula is given as
V
OUT=Vpull/(1+Rpull/Roff)
where Vpull is pull-up voltage Roff is OFF resistance of N-ch driver M5 (Roff=VOUT/ILEAK=15MΩ from the
electrical characteristics table)
For examples, if you want to get VOUT larger than 5.99V when Vpull is 6.0V, Rpull can be calculated as follows;
Rpull=(Vpull/VOUT-1)×Roff=(6/5.99-1)×15×10625kΩ
Therefore, pull-up resistance should be selected 25kΩ or below.
Figure 3: Circuit example with the delay capacitance pin
(Cd) connected to a schottky barrier diode
Note: Roff=VOUT/ILEAK
Figure 4: Circuit example of XC6109N Series
(No resistor needed
for CMOS output
products)
l T
10/14
XC6109 Series
XC6109N25AN
-1.0
0.0
1.0
2.0
3.0
4.0
0 0.5 1 1.5 2 2.5 3
Supply Voltage: VIN (V)
Output Voltage: VOUT (V)
Pull-up=VIN R=100kΩ
25
-40
Ta=85
TYPICAL PERFORMANCE CHARACTERISTICS
XC6109x25AN
2.45
2.50
2.55
-50 -25 0 25 50 75 100
Ambient Temperature: Ta ()
Detect Voltage: VDF (V)
XC6109x25AN
0.05
0.10
0.15
0.20
-50 -25 0 25 50 75 100
Ambient Temperature: Ta ()
Hysteresis Voltage :
VHYS (V)
(1) Supply Current vs. Input Voltage (2) Detect Voltage vs. Ambient Temperature
(3) Hysteresis Voltage vs. Ambient Temperature
(4) Output Voltage vs. Input Voltage
XC6109C25AN
-1.0
0.0
1.0
2.0
3.0
4.0
0 0.5 1 1.5 2 2.5 3
Input Voltage: VIN (V)
Output Voltage: VOUT (V)
No Pull-up
Ta=85
25
-40
XC6109x25AN
0.0
0.5
1.0
1.5
2.0
0123456
Input Voltage: VIN (V)
Supply Current: ISS (μA)
25
-40
Ta=85
Input Voltage: VIN (V)
(a) Release Delay Tlme vs. Delay Capacnance TOIREX
11/14
XC6109
Series
XC6109xxxAN
1
1.5
2
2.5
3
3.5
4
-50-250 255075100
Ambient Temperature: Ta ()
Delay Resistance: Rdelay
(MΩ)
VCD=0.0V VIN=6.0V
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
XC6109xxxAN
0.1
1
10
100
1000
10000
0.0001 0.001 0.01 0.1 1
Delay Capacitance: Cd (μF)
Release Delay Time: TDR (ms)
VIN ( M IN.)= 0.7V,VIN ( M AX.) = 6.0V
Tr=5μs, Ta=25
XC6109xxxAN
1
10
100
1000
10000
100000
0.0001 0.001 0.01 0.1 1
Delay Capacitance: Cd (μF)
Detect Delay Time: TDF (μs)
VIN ( M IN.)= 0.7V, VIN ( M AX.) = 6.0V
Tf=5μs, Ta=25
(5) Output Current vs. Input Voltage
(6) Cd Pin Sink Current vs. Input Voltage (7) Delay Resistance vs. Ambient Temperature
(8) Release Delay Time vs. Delay Capacitance (9) Detect Delay Time vs. Delay Capacitance
XC6109x50AN
0.0
1.0
2.0
3.0
4.0
0123456
Input Voltage: VIN (V)
Output Current: IOUT (mA)
VD S(N-ch) = 0.5V
25
Ta=-40
85
XC6109C08AN
-2.0
-1.5
-1.0
-0.5
0.0
0123456
Input Voltage: VIN (V)
Output Current: IOUT (mA)
VDS(P-ch)=0.5V
25-40
Ta=85
XC6109x50AN
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0123456
Input Voltage: VIN (V)
Cd Pin Sink Current: ICD (mA)
VD S=0.5V
25
85
Ta=-40
12/14
XC6109 Series
XC6109N25AN
0.10
0.15
0.20
0.25
-50 -25 0 25 50 75 100
Ambient Temperature: Ta ()
Leak Carrent: ILEAK ( μA)
VIN=6.0V VOUT=6.0V
(10) Leak Current vs. Ambient Temperature
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(11) Leak Current vs. Output Voltage
XC6109N25AN
0.10
0.15
0.20
0.25
0123456
Output Voltage: VOUT (V)
Leak Current: ILEAK (
μA)
VIN=6.0V
(unit: mm) 20:01 025E: a “mi, mg D- 5 ‘71: ] g g SSOT—24 Package fi D 11‘; L27 ’42 E El TOIREX
13/14
XC6109
Series
12
3
4
MARK VOLTAGE (V) PRODUCT SERIES MARK VOLTAGE (V) PRODUCT SERIES
A 0.x XC6109C0xxNx K 0.x XC6109N0xxNx
B 1.x XC6109C1xxNx L 1.x XC6109N1xxNx
C 2.x XC6109C2xxNx M 2.x XC6109N2xxNx
D 3.x XC6109C3xxNx N 3.x XC6109N3xxNx
E 4.x XC6109C4xxNx P 4.x XC6109N4xxNx
F 5.x XC6109C5xxNx R 5.x XC6109N5xxNx
MARK VOLTAGE (V) PRODUCT SERIES
N x.0 XC6109xx0xNx
P x.1 XC6109xx1xNx
R x.2 XC6109xx2xNx
S x.3 XC6109xx3xNx
T x.4 XC6109xx4xNx
U x.5 XC6109xx5xNx
V x.6 XC6109xx6xNx
X x.7 XC6109xx7xNx
Y x.8 XC6109xx8xNx
Z x.9 XC6109xx9xNx
PACKAGING INFORMATION
SSOT-24
MARKING RULE
SSOT-24 Represents output configuration and integer number of detect voltage
CMOS output (XC6109C Series) N-ch Open Drain output (XC6109N Series)
Represents decimal number of detect voltage
Represents production lot number
0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated/
(G, I, J, O, Q, W excluded)
SSOT-24
(TOP VIEW)
06109 Series TOREX SEMICONDUCTOR LTD.
14/14
XC6109 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics. Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.

Products related to this Datasheet

IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0.57
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0.57
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0.57
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0.57
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0
IC SUPERVISOR 1 CHANNEL SSOT24
Available Quantity: 0
Unit Price: 0